@inproceedings{drozdov-etal-2019-unsupervised,
title = "Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders",
author = "Drozdov, Andrew and
Verga, Patrick and
Chen, Yi-Pei and
Iyyer, Mohit and
McCallum, Andrew",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1161/",
doi = "10.18653/v1/D19-1161",
pages = "1507--1512",
abstract = "Understanding text often requires identifying meaningful constituent spans such as noun phrases and verb phrases. In this work, we show that we can effectively recover these types of labels using the learned phrase vectors from deep inside-outside recursive autoencoders (DIORA). Specifically, we cluster span representations to induce span labels. Additionally, we improve the model`s labeling accuracy by integrating latent code learning into the training procedure. We evaluate this approach empirically through unsupervised labeled constituency parsing. Our method outperforms ELMo and BERT on two versions of the Wall Street Journal (WSJ) dataset and is competitive to prior work that requires additional human annotations, improving over a previous state-of-the-art system that depends on ground-truth part-of-speech tags by 5 absolute F1 points (19{\%} relative error reduction)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="drozdov-etal-2019-unsupervised">
<titleInfo>
<title>Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Drozdov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Verga</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi-Pei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding text often requires identifying meaningful constituent spans such as noun phrases and verb phrases. In this work, we show that we can effectively recover these types of labels using the learned phrase vectors from deep inside-outside recursive autoencoders (DIORA). Specifically, we cluster span representations to induce span labels. Additionally, we improve the model‘s labeling accuracy by integrating latent code learning into the training procedure. We evaluate this approach empirically through unsupervised labeled constituency parsing. Our method outperforms ELMo and BERT on two versions of the Wall Street Journal (WSJ) dataset and is competitive to prior work that requires additional human annotations, improving over a previous state-of-the-art system that depends on ground-truth part-of-speech tags by 5 absolute F1 points (19% relative error reduction).</abstract>
<identifier type="citekey">drozdov-etal-2019-unsupervised</identifier>
<identifier type="doi">10.18653/v1/D19-1161</identifier>
<location>
<url>https://aclanthology.org/D19-1161/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>1507</start>
<end>1512</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders
%A Drozdov, Andrew
%A Verga, Patrick
%A Chen, Yi-Pei
%A Iyyer, Mohit
%A McCallum, Andrew
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F drozdov-etal-2019-unsupervised
%X Understanding text often requires identifying meaningful constituent spans such as noun phrases and verb phrases. In this work, we show that we can effectively recover these types of labels using the learned phrase vectors from deep inside-outside recursive autoencoders (DIORA). Specifically, we cluster span representations to induce span labels. Additionally, we improve the model‘s labeling accuracy by integrating latent code learning into the training procedure. We evaluate this approach empirically through unsupervised labeled constituency parsing. Our method outperforms ELMo and BERT on two versions of the Wall Street Journal (WSJ) dataset and is competitive to prior work that requires additional human annotations, improving over a previous state-of-the-art system that depends on ground-truth part-of-speech tags by 5 absolute F1 points (19% relative error reduction).
%R 10.18653/v1/D19-1161
%U https://aclanthology.org/D19-1161/
%U https://doi.org/10.18653/v1/D19-1161
%P 1507-1512
Markdown (Informal)
[Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders](https://aclanthology.org/D19-1161/) (Drozdov et al., EMNLP-IJCNLP 2019)
ACL
- Andrew Drozdov, Patrick Verga, Yi-Pei Chen, Mohit Iyyer, and Andrew McCallum. 2019. Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1507–1512, Hong Kong, China. Association for Computational Linguistics.