@inproceedings{gupta-etal-2019-neural,
title = "Neural Architectures for Fine-Grained Propaganda Detection in News",
author = {Gupta, Pankaj and
Saxena, Khushbu and
Yaseen, Usama and
Runkler, Thomas and
Sch{\"u}tze, Hinrich},
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Barr{\'o}n-Cede{\~n}o, Alberto and
Brew, Chris and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5012/",
doi = "10.18653/v1/D19-5012",
pages = "92--97",
abstract = "This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-etal-2019-neural">
<titleInfo>
<title>Neural Architectures for Fine-Grained Propaganda Detection in News</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pankaj</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khushbu</namePart>
<namePart type="family">Saxena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Usama</namePart>
<namePart type="family">Yaseen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Runkler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively.</abstract>
<identifier type="citekey">gupta-etal-2019-neural</identifier>
<identifier type="doi">10.18653/v1/D19-5012</identifier>
<location>
<url>https://aclanthology.org/D19-5012/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>92</start>
<end>97</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Architectures for Fine-Grained Propaganda Detection in News
%A Gupta, Pankaj
%A Saxena, Khushbu
%A Yaseen, Usama
%A Runkler, Thomas
%A Schütze, Hinrich
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Barrón-Cedeño, Alberto
%Y Brew, Chris
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F gupta-etal-2019-neural
%X This paper describes our system (MIC-CIS) details and results of participation in the fine grained propaganda detection shared task 2019. To address the tasks of sentence (SLC) and fragment level (FLC) propaganda detection, we explore different neural architectures (e.g., CNN, LSTM-CRF and BERT) and extract linguistic (e.g., part-of-speech, named entity, readability, sentiment, emotion, etc.), layout and topical features. Specifically, we have designed multi-granularity and multi-tasking neural architectures to jointly perform both the sentence and fragment level propaganda detection. Additionally, we investigate different ensemble schemes such as majority-voting, relax-voting, etc. to boost overall system performance. Compared to the other participating systems, our submissions are ranked 3rd and 4th in FLC and SLC tasks, respectively.
%R 10.18653/v1/D19-5012
%U https://aclanthology.org/D19-5012/
%U https://doi.org/10.18653/v1/D19-5012
%P 92-97
Markdown (Informal)
[Neural Architectures for Fine-Grained Propaganda Detection in News](https://aclanthology.org/D19-5012/) (Gupta et al., NLP4IF 2019)
ACL
- Pankaj Gupta, Khushbu Saxena, Usama Yaseen, Thomas Runkler, and Hinrich Schütze. 2019. Neural Architectures for Fine-Grained Propaganda Detection in News. In Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 92–97, Hong Kong, China. Association for Computational Linguistics.