@inproceedings{currey-heafield-2019-zero,
title = "Zero-Resource Neural Machine Translation with Monolingual Pivot Data",
author = "Currey, Anna and
Heafield, Kenneth",
editor = "Birch, Alexandra and
Finch, Andrew and
Hayashi, Hiroaki and
Konstas, Ioannis and
Luong, Thang and
Neubig, Graham and
Oda, Yusuke and
Sudoh, Katsuhito",
booktitle = "Proceedings of the 3rd Workshop on Neural Generation and Translation",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5610/",
doi = "10.18653/v1/D19-5610",
pages = "99--107",
abstract = "Zero-shot neural machine translation (NMT) is a framework that uses source-pivot and target-pivot parallel data to train a source-target NMT system. An extension to zero-shot NMT is zero-resource NMT, which generates pseudo-parallel corpora using a zero-shot system and further trains the zero-shot system on that data. In this paper, we expand on zero-resource NMT by incorporating monolingual data in the pivot language into training; since the pivot language is usually the highest-resource language of the three, we expect monolingual pivot-language data to be most abundant. We propose methods for generating pseudo-parallel corpora using pivot-language monolingual data and for leveraging the pseudo-parallel corpora to improve the zero-shot NMT system. We evaluate these methods for a high-resource language pair (German-Russian) using English as the pivot. We show that our proposed methods yield consistent improvements over strong zero-shot and zero-resource baselines and even catch up to pivot-based models in BLEU (while not requiring the two-pass inference that pivot models require)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="currey-heafield-2019-zero">
<titleInfo>
<title>Zero-Resource Neural Machine Translation with Monolingual Pivot Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Currey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Heafield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Neural Generation and Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Birch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Finch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroaki</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="family">Konstas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thang</namePart>
<namePart type="family">Luong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuhito</namePart>
<namePart type="family">Sudoh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Zero-shot neural machine translation (NMT) is a framework that uses source-pivot and target-pivot parallel data to train a source-target NMT system. An extension to zero-shot NMT is zero-resource NMT, which generates pseudo-parallel corpora using a zero-shot system and further trains the zero-shot system on that data. In this paper, we expand on zero-resource NMT by incorporating monolingual data in the pivot language into training; since the pivot language is usually the highest-resource language of the three, we expect monolingual pivot-language data to be most abundant. We propose methods for generating pseudo-parallel corpora using pivot-language monolingual data and for leveraging the pseudo-parallel corpora to improve the zero-shot NMT system. We evaluate these methods for a high-resource language pair (German-Russian) using English as the pivot. We show that our proposed methods yield consistent improvements over strong zero-shot and zero-resource baselines and even catch up to pivot-based models in BLEU (while not requiring the two-pass inference that pivot models require).</abstract>
<identifier type="citekey">currey-heafield-2019-zero</identifier>
<identifier type="doi">10.18653/v1/D19-5610</identifier>
<location>
<url>https://aclanthology.org/D19-5610/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>99</start>
<end>107</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-Resource Neural Machine Translation with Monolingual Pivot Data
%A Currey, Anna
%A Heafield, Kenneth
%Y Birch, Alexandra
%Y Finch, Andrew
%Y Hayashi, Hiroaki
%Y Konstas, Ioannis
%Y Luong, Thang
%Y Neubig, Graham
%Y Oda, Yusuke
%Y Sudoh, Katsuhito
%S Proceedings of the 3rd Workshop on Neural Generation and Translation
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F currey-heafield-2019-zero
%X Zero-shot neural machine translation (NMT) is a framework that uses source-pivot and target-pivot parallel data to train a source-target NMT system. An extension to zero-shot NMT is zero-resource NMT, which generates pseudo-parallel corpora using a zero-shot system and further trains the zero-shot system on that data. In this paper, we expand on zero-resource NMT by incorporating monolingual data in the pivot language into training; since the pivot language is usually the highest-resource language of the three, we expect monolingual pivot-language data to be most abundant. We propose methods for generating pseudo-parallel corpora using pivot-language monolingual data and for leveraging the pseudo-parallel corpora to improve the zero-shot NMT system. We evaluate these methods for a high-resource language pair (German-Russian) using English as the pivot. We show that our proposed methods yield consistent improvements over strong zero-shot and zero-resource baselines and even catch up to pivot-based models in BLEU (while not requiring the two-pass inference that pivot models require).
%R 10.18653/v1/D19-5610
%U https://aclanthology.org/D19-5610/
%U https://doi.org/10.18653/v1/D19-5610
%P 99-107
Markdown (Informal)
[Zero-Resource Neural Machine Translation with Monolingual Pivot Data](https://aclanthology.org/D19-5610/) (Currey & Heafield, NGT 2019)
ACL