@inproceedings{sergeeva-etal-2019-neural,
    title = "Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text",
    author = "Sergeeva, Elena  and
      Zhu, Henghui  and
      Tahmasebi, Amir  and
      Szolovits, Peter",
    editor = "Holderness, Eben  and
      Jimeno Yepes, Antonio  and
      Lavelli, Alberto  and
      Minard, Anne-Lyse  and
      Pustejovsky, James  and
      Rinaldi, Fabio",
    booktitle = "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-6221/",
    doi = "10.18653/v1/D19-6221",
    pages = "178--187",
    abstract = "Since the introduction of context-aware token representation techniques such as Embeddings from Language Models (ELMo) and Bidirectional Encoder Representations from Transformers (BERT), there has been numerous reports on improved performance on a variety of natural language tasks. Nevertheless, the degree to which the resulting context-aware representations encode information about morpho-syntactic properties of the word/token in a sentence remains unclear. In this paper, we investigate the application and impact of state-of-the-art neural token representations for automatic cue-conditional speculation and negation scope detection coupled with the independently computed morpho-syntactic information. Through this work, We establish a new state-of-the-art for the BioScope and NegPar corpus. More importantly, we provide a thorough analysis of neural representations and additional features interactions, cue-representation for conditioning, discuss model behavior on different datasets and address the annotation-induced biases in the learned representations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sergeeva-etal-2019-neural">
    <titleInfo>
        <title>Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Elena</namePart>
        <namePart type="family">Sergeeva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Henghui</namePart>
        <namePart type="family">Zhu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Amir</namePart>
        <namePart type="family">Tahmasebi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Peter</namePart>
        <namePart type="family">Szolovits</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Eben</namePart>
            <namePart type="family">Holderness</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Antonio</namePart>
            <namePart type="family">Jimeno Yepes</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alberto</namePart>
            <namePart type="family">Lavelli</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anne-Lyse</namePart>
            <namePart type="family">Minard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">James</namePart>
            <namePart type="family">Pustejovsky</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Fabio</namePart>
            <namePart type="family">Rinaldi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Since the introduction of context-aware token representation techniques such as Embeddings from Language Models (ELMo) and Bidirectional Encoder Representations from Transformers (BERT), there has been numerous reports on improved performance on a variety of natural language tasks. Nevertheless, the degree to which the resulting context-aware representations encode information about morpho-syntactic properties of the word/token in a sentence remains unclear. In this paper, we investigate the application and impact of state-of-the-art neural token representations for automatic cue-conditional speculation and negation scope detection coupled with the independently computed morpho-syntactic information. Through this work, We establish a new state-of-the-art for the BioScope and NegPar corpus. More importantly, we provide a thorough analysis of neural representations and additional features interactions, cue-representation for conditioning, discuss model behavior on different datasets and address the annotation-induced biases in the learned representations.</abstract>
    <identifier type="citekey">sergeeva-etal-2019-neural</identifier>
    <identifier type="doi">10.18653/v1/D19-6221</identifier>
    <location>
        <url>https://aclanthology.org/D19-6221/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>178</start>
            <end>187</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text
%A Sergeeva, Elena
%A Zhu, Henghui
%A Tahmasebi, Amir
%A Szolovits, Peter
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F sergeeva-etal-2019-neural
%X Since the introduction of context-aware token representation techniques such as Embeddings from Language Models (ELMo) and Bidirectional Encoder Representations from Transformers (BERT), there has been numerous reports on improved performance on a variety of natural language tasks. Nevertheless, the degree to which the resulting context-aware representations encode information about morpho-syntactic properties of the word/token in a sentence remains unclear. In this paper, we investigate the application and impact of state-of-the-art neural token representations for automatic cue-conditional speculation and negation scope detection coupled with the independently computed morpho-syntactic information. Through this work, We establish a new state-of-the-art for the BioScope and NegPar corpus. More importantly, we provide a thorough analysis of neural representations and additional features interactions, cue-representation for conditioning, discuss model behavior on different datasets and address the annotation-induced biases in the learned representations.
%R 10.18653/v1/D19-6221
%U https://aclanthology.org/D19-6221/
%U https://doi.org/10.18653/v1/D19-6221
%P 178-187
Markdown (Informal)
[Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text](https://aclanthology.org/D19-6221/) (Sergeeva et al., Louhi 2019)
ACL