@inproceedings{hong-etal-2019-improving,
title = "Improving Language Generation from Feature-Rich Tree-Structured Data with Relational Graph Convolutional Encoders",
author = "Hong, Xudong and
Chang, Ernie and
Demberg, Vera",
editor = "Mille, Simon and
Belz, Anja and
Bohnet, Bernd and
Graham, Yvette and
Wanner, Leo",
booktitle = "Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6310",
doi = "10.18653/v1/D19-6310",
pages = "75--80",
abstract = "The Multilingual Surface Realization Shared Task 2019 focuses on generating sentences from lemmatized sets of universal dependency parses with rich features. This paper describes the results of our participation in the deep track. The core innovation in our approach is to use a graph convolutional network to encode the dependency trees given as input. Upon adding morphological features, our system achieves the third rank without using data augmentation techniques or additional components (such as a re-ranker).",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hong-etal-2019-improving">
<titleInfo>
<title>Improving Language Generation from Feature-Rich Tree-Structured Data with Relational Graph Convolutional Encoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xudong</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ernie</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Multilingual Surface Realization Shared Task 2019 focuses on generating sentences from lemmatized sets of universal dependency parses with rich features. This paper describes the results of our participation in the deep track. The core innovation in our approach is to use a graph convolutional network to encode the dependency trees given as input. Upon adding morphological features, our system achieves the third rank without using data augmentation techniques or additional components (such as a re-ranker).</abstract>
<identifier type="citekey">hong-etal-2019-improving</identifier>
<identifier type="doi">10.18653/v1/D19-6310</identifier>
<location>
<url>https://aclanthology.org/D19-6310</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>75</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Language Generation from Feature-Rich Tree-Structured Data with Relational Graph Convolutional Encoders
%A Hong, Xudong
%A Chang, Ernie
%A Demberg, Vera
%Y Mille, Simon
%Y Belz, Anja
%Y Bohnet, Bernd
%Y Graham, Yvette
%Y Wanner, Leo
%S Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F hong-etal-2019-improving
%X The Multilingual Surface Realization Shared Task 2019 focuses on generating sentences from lemmatized sets of universal dependency parses with rich features. This paper describes the results of our participation in the deep track. The core innovation in our approach is to use a graph convolutional network to encode the dependency trees given as input. Upon adding morphological features, our system achieves the third rank without using data augmentation techniques or additional components (such as a re-ranker).
%R 10.18653/v1/D19-6310
%U https://aclanthology.org/D19-6310
%U https://doi.org/10.18653/v1/D19-6310
%P 75-80
Markdown (Informal)
[Improving Language Generation from Feature-Rich Tree-Structured Data with Relational Graph Convolutional Encoders](https://aclanthology.org/D19-6310) (Hong et al., 2019)
ACL