@inproceedings{schreiber-etal-2018-nlp,
title = "{NLP} Lean Programming Framework: Developing {NLP} Applications More Effectively",
author = {Schreiber, Marc and
Kraft, Bodo and
Z{\"u}ndorf, Albert},
editor = "Liu, Yang and
Paek, Tim and
Patwardhan, Manasi",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Demonstrations",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-5001",
doi = "10.18653/v1/N18-5001",
pages = "1--5",
abstract = "This paper presents NLP Lean Programming framework (NLPf), a new framework for creating custom Natural Language Processing (NLP) models and pipelines by utilizing common software development build systems. This approach allows developers to train and integrate domain-specific NLP pipelines into their applications seamlessly. Additionally, NLPf provides an annotation tool which improves the annotation process significantly by providing a well-designed GUI and sophisticated way of using input devices. Due to NLPf{'}s properties developers and domain experts are able to build domain-specific NLP application more effectively. Project page: \url{https://gitlab.com/schrieveslaach/NLPf} Video Tutorial: \url{https://www.youtube.com/watch?v=44UJspVebTA} (Demonstration starts at 11:40 min) This paper is related to: - Interfaces and resources to support linguistic annotation - Software architectures and reusable components - Software tools for evaluation or error analysis",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schreiber-etal-2018-nlp">
<titleInfo>
<title>NLP Lean Programming Framework: Developing NLP Applications More Effectively</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Schreiber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bodo</namePart>
<namePart type="family">Kraft</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Zündorf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Paek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manasi</namePart>
<namePart type="family">Patwardhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents NLP Lean Programming framework (NLPf), a new framework for creating custom Natural Language Processing (NLP) models and pipelines by utilizing common software development build systems. This approach allows developers to train and integrate domain-specific NLP pipelines into their applications seamlessly. Additionally, NLPf provides an annotation tool which improves the annotation process significantly by providing a well-designed GUI and sophisticated way of using input devices. Due to NLPf’s properties developers and domain experts are able to build domain-specific NLP application more effectively. Project page: https://gitlab.com/schrieveslaach/NLPf Video Tutorial: https://www.youtube.com/watch?v=44UJspVebTA (Demonstration starts at 11:40 min) This paper is related to: - Interfaces and resources to support linguistic annotation - Software architectures and reusable components - Software tools for evaluation or error analysis</abstract>
<identifier type="citekey">schreiber-etal-2018-nlp</identifier>
<identifier type="doi">10.18653/v1/N18-5001</identifier>
<location>
<url>https://aclanthology.org/N18-5001</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1</start>
<end>5</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLP Lean Programming Framework: Developing NLP Applications More Effectively
%A Schreiber, Marc
%A Kraft, Bodo
%A Zündorf, Albert
%Y Liu, Yang
%Y Paek, Tim
%Y Patwardhan, Manasi
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F schreiber-etal-2018-nlp
%X This paper presents NLP Lean Programming framework (NLPf), a new framework for creating custom Natural Language Processing (NLP) models and pipelines by utilizing common software development build systems. This approach allows developers to train and integrate domain-specific NLP pipelines into their applications seamlessly. Additionally, NLPf provides an annotation tool which improves the annotation process significantly by providing a well-designed GUI and sophisticated way of using input devices. Due to NLPf’s properties developers and domain experts are able to build domain-specific NLP application more effectively. Project page: https://gitlab.com/schrieveslaach/NLPf Video Tutorial: https://www.youtube.com/watch?v=44UJspVebTA (Demonstration starts at 11:40 min) This paper is related to: - Interfaces and resources to support linguistic annotation - Software architectures and reusable components - Software tools for evaluation or error analysis
%R 10.18653/v1/N18-5001
%U https://aclanthology.org/N18-5001
%U https://doi.org/10.18653/v1/N18-5001
%P 1-5
Markdown (Informal)
[NLP Lean Programming Framework: Developing NLP Applications More Effectively](https://aclanthology.org/N18-5001) (Schreiber et al., NAACL 2018)
ACL