@inproceedings{liang-etal-2018-cnns,
title = "{CNN}s for {NLP} in the Browser: Client-Side Deployment and Visualization Opportunities",
author = "Liang, Yiyun and
Tu, Zhucheng and
Huang, Laetitia and
Lin, Jimmy",
editor = "Liu, Yang and
Paek, Tim and
Patwardhan, Manasi",
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Demonstrations",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N18-5013",
doi = "10.18653/v1/N18-5013",
pages = "61--65",
abstract = "We demonstrate a JavaScript implementation of a convolutional neural network that performs feedforward inference completely in the browser. Such a deployment means that models can run completely on the client, on a wide range of devices, without making backend server requests. This design is useful for applications with stringent latency requirements or low connectivity. Our evaluations show the feasibility of JavaScript as a deployment target. Furthermore, an in-browser implementation enables seamless integration with the JavaScript ecosystem for information visualization, providing opportunities to visually inspect neural networks and better understand their inner workings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liang-etal-2018-cnns">
<titleInfo>
<title>CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportunities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiyun</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhucheng</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laetitia</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jimmy</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Paek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manasi</namePart>
<namePart type="family">Patwardhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We demonstrate a JavaScript implementation of a convolutional neural network that performs feedforward inference completely in the browser. Such a deployment means that models can run completely on the client, on a wide range of devices, without making backend server requests. This design is useful for applications with stringent latency requirements or low connectivity. Our evaluations show the feasibility of JavaScript as a deployment target. Furthermore, an in-browser implementation enables seamless integration with the JavaScript ecosystem for information visualization, providing opportunities to visually inspect neural networks and better understand their inner workings.</abstract>
<identifier type="citekey">liang-etal-2018-cnns</identifier>
<identifier type="doi">10.18653/v1/N18-5013</identifier>
<location>
<url>https://aclanthology.org/N18-5013</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>61</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportunities
%A Liang, Yiyun
%A Tu, Zhucheng
%A Huang, Laetitia
%A Lin, Jimmy
%Y Liu, Yang
%Y Paek, Tim
%Y Patwardhan, Manasi
%S Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F liang-etal-2018-cnns
%X We demonstrate a JavaScript implementation of a convolutional neural network that performs feedforward inference completely in the browser. Such a deployment means that models can run completely on the client, on a wide range of devices, without making backend server requests. This design is useful for applications with stringent latency requirements or low connectivity. Our evaluations show the feasibility of JavaScript as a deployment target. Furthermore, an in-browser implementation enables seamless integration with the JavaScript ecosystem for information visualization, providing opportunities to visually inspect neural networks and better understand their inner workings.
%R 10.18653/v1/N18-5013
%U https://aclanthology.org/N18-5013
%U https://doi.org/10.18653/v1/N18-5013
%P 61-65
Markdown (Informal)
[CNNs for NLP in the Browser: Client-Side Deployment and Visualization Opportunities](https://aclanthology.org/N18-5013) (Liang et al., NAACL 2018)
ACL