@inproceedings{deb-etal-2019-diversifying,
title = "Diversifying Reply Suggestions Using a Matching-Conditional Variational Autoencoder",
author = "Deb, Budhaditya and
Bailey, Peter and
Shokouhi, Milad",
editor = "Loukina, Anastassia and
Morales, Michelle and
Kumar, Rohit",
booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/N19-2006/",
doi = "10.18653/v1/N19-2006",
pages = "40--47",
abstract = "We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by {\ensuremath{\sim}}30{\ensuremath{-}}40{\%} without significant impact on relevance. This translated to a {\ensuremath{\sim}}5{\%} gain in click-rate in our online production system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="deb-etal-2019-diversifying">
<titleInfo>
<title>Diversifying Reply Suggestions Using a Matching-Conditional Variational Autoencoder</title>
</titleInfo>
<name type="personal">
<namePart type="given">Budhaditya</namePart>
<namePart type="family">Deb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Bailey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Milad</namePart>
<namePart type="family">Shokouhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anastassia</namePart>
<namePart type="family">Loukina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Morales</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rohit</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, Minnesota</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by \ensuremath\sim30\ensuremath-40% without significant impact on relevance. This translated to a \ensuremath\sim5% gain in click-rate in our online production system.</abstract>
<identifier type="citekey">deb-etal-2019-diversifying</identifier>
<identifier type="doi">10.18653/v1/N19-2006</identifier>
<location>
<url>https://aclanthology.org/N19-2006/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>40</start>
<end>47</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Diversifying Reply Suggestions Using a Matching-Conditional Variational Autoencoder
%A Deb, Budhaditya
%A Bailey, Peter
%A Shokouhi, Milad
%Y Loukina, Anastassia
%Y Morales, Michelle
%Y Kumar, Rohit
%S Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, Minnesota
%F deb-etal-2019-diversifying
%X We consider the problem of diversifying automated reply suggestions for a commercial instant-messaging (IM) system (Skype). Our conversation model is a standard matching based information retrieval architecture, which consists of two parallel encoders to project messages and replies into a common feature representation. During inference, we select replies from a fixed response set using nearest neighbors in the feature space. To diversify responses, we formulate the model as a generative latent variable model with Conditional Variational Auto-Encoder (M-CVAE). We propose a constrained-sampling approach to make the variational inference in M-CVAE efficient for our production system. In offline experiments, M-CVAE consistently increased diversity by \ensuremath\sim30\ensuremath-40% without significant impact on relevance. This translated to a \ensuremath\sim5% gain in click-rate in our online production system.
%R 10.18653/v1/N19-2006
%U https://aclanthology.org/N19-2006/
%U https://doi.org/10.18653/v1/N19-2006
%P 40-47
Markdown (Informal)
[Diversifying Reply Suggestions Using a Matching-Conditional Variational Autoencoder](https://aclanthology.org/N19-2006/) (Deb et al., NAACL 2019)
ACL