@inproceedings{aharoni-goldberg-2017-towards,
title = "Towards String-To-Tree Neural Machine Translation",
author = "Aharoni, Roee and
Goldberg, Yoav",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2021",
doi = "10.18653/v1/P17-2021",
pages = "132--140",
abstract = "We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translation task resulted in an improved BLEU score when compared to a syntax-agnostic NMT baseline trained on the same dataset. An analysis of the translations from the syntax-aware system shows that it performs more reordering during translation in comparison to the baseline. A small-scale human evaluation also showed an advantage to the syntax-aware system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aharoni-goldberg-2017-towards">
<titleInfo>
<title>Towards String-To-Tree Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roee</namePart>
<namePart type="family">Aharoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translation task resulted in an improved BLEU score when compared to a syntax-agnostic NMT baseline trained on the same dataset. An analysis of the translations from the syntax-aware system shows that it performs more reordering during translation in comparison to the baseline. A small-scale human evaluation also showed an advantage to the syntax-aware system.</abstract>
<identifier type="citekey">aharoni-goldberg-2017-towards</identifier>
<identifier type="doi">10.18653/v1/P17-2021</identifier>
<location>
<url>https://aclanthology.org/P17-2021</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>132</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards String-To-Tree Neural Machine Translation
%A Aharoni, Roee
%A Goldberg, Yoav
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F aharoni-goldberg-2017-towards
%X We present a simple method to incorporate syntactic information about the target language in a neural machine translation system by translating into linearized, lexicalized constituency trees. An experiment on the WMT16 German-English news translation task resulted in an improved BLEU score when compared to a syntax-agnostic NMT baseline trained on the same dataset. An analysis of the translations from the syntax-aware system shows that it performs more reordering during translation in comparison to the baseline. A small-scale human evaluation also showed an advantage to the syntax-aware system.
%R 10.18653/v1/P17-2021
%U https://aclanthology.org/P17-2021
%U https://doi.org/10.18653/v1/P17-2021
%P 132-140
Markdown (Informal)
[Towards String-To-Tree Neural Machine Translation](https://aclanthology.org/P17-2021) (Aharoni & Goldberg, ACL 2017)
ACL
- Roee Aharoni and Yoav Goldberg. 2017. Towards String-To-Tree Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 132–140, Vancouver, Canada. Association for Computational Linguistics.