@inproceedings{yu-vu-2017-character,
title = "Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages",
author = "Yu, Xiang and
Vu, Ngoc Thang",
editor = "Barzilay, Regina and
Kan, Min-Yen",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P17-2106",
doi = "10.18653/v1/P17-2106",
pages = "672--678",
abstract = "We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et. al, 2015) by a margin of 3{\%} on average.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yu-vu-2017-character">
<titleInfo>
<title>Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Thang</namePart>
<namePart type="family">Vu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Regina</namePart>
<namePart type="family">Barzilay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et. al, 2015) by a margin of 3% on average.</abstract>
<identifier type="citekey">yu-vu-2017-character</identifier>
<identifier type="doi">10.18653/v1/P17-2106</identifier>
<location>
<url>https://aclanthology.org/P17-2106</url>
</location>
<part>
<date>2017-07</date>
<extent unit="page">
<start>672</start>
<end>678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages
%A Yu, Xiang
%A Vu, Ngoc Thang
%Y Barzilay, Regina
%Y Kan, Min-Yen
%S Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2017
%8 July
%I Association for Computational Linguistics
%C Vancouver, Canada
%F yu-vu-2017-character
%X We present a transition-based dependency parser that uses a convolutional neural network to compose word representations from characters. The character composition model shows great improvement over the word-lookup model, especially for parsing agglutinative languages. These improvements are even better than using pre-trained word embeddings from extra data. On the SPMRL data sets, our system outperforms the previous best greedy parser (Ballesteros et. al, 2015) by a margin of 3% on average.
%R 10.18653/v1/P17-2106
%U https://aclanthology.org/P17-2106
%U https://doi.org/10.18653/v1/P17-2106
%P 672-678
Markdown (Informal)
[Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages](https://aclanthology.org/P17-2106) (Yu & Vu, ACL 2017)
ACL