@inproceedings{ruiter-etal-2019-self,
title = "Self-Supervised Neural Machine Translation",
author = "Ruiter, Dana and
Espa{\~n}a-Bonet, Cristina and
van Genabith, Josef",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1178",
doi = "10.18653/v1/P19-1178",
pages = "1828--1834",
abstract = "We present a simple new method where an emergent NMT system is used for simultaneously selecting training data and learning internal NMT representations. This is done in a self-supervised way without parallel data, in such a way that both tasks enhance each other during training. The method is language independent, introduces no additional hyper-parameters, and achieves BLEU scores of 29.21 (en2fr) and 27.36 (fr2en) on newstest2014 using English and French Wikipedia data for training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ruiter-etal-2019-self">
<titleInfo>
<title>Self-Supervised Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dana</namePart>
<namePart type="family">Ruiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">España-Bonet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">van Genabith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple new method where an emergent NMT system is used for simultaneously selecting training data and learning internal NMT representations. This is done in a self-supervised way without parallel data, in such a way that both tasks enhance each other during training. The method is language independent, introduces no additional hyper-parameters, and achieves BLEU scores of 29.21 (en2fr) and 27.36 (fr2en) on newstest2014 using English and French Wikipedia data for training.</abstract>
<identifier type="citekey">ruiter-etal-2019-self</identifier>
<identifier type="doi">10.18653/v1/P19-1178</identifier>
<location>
<url>https://aclanthology.org/P19-1178</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>1828</start>
<end>1834</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Supervised Neural Machine Translation
%A Ruiter, Dana
%A España-Bonet, Cristina
%A van Genabith, Josef
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F ruiter-etal-2019-self
%X We present a simple new method where an emergent NMT system is used for simultaneously selecting training data and learning internal NMT representations. This is done in a self-supervised way without parallel data, in such a way that both tasks enhance each other during training. The method is language independent, introduces no additional hyper-parameters, and achieves BLEU scores of 29.21 (en2fr) and 27.36 (fr2en) on newstest2014 using English and French Wikipedia data for training.
%R 10.18653/v1/P19-1178
%U https://aclanthology.org/P19-1178
%U https://doi.org/10.18653/v1/P19-1178
%P 1828-1834
Markdown (Informal)
[Self-Supervised Neural Machine Translation](https://aclanthology.org/P19-1178) (Ruiter et al., ACL 2019)
ACL
- Dana Ruiter, Cristina España-Bonet, and Josef van Genabith. 2019. Self-Supervised Neural Machine Translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1828–1834, Florence, Italy. Association for Computational Linguistics.