@inproceedings{correia-martins-2019-simple,
title = "A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning",
author = "Correia, Gon{\c{c}}alo M. and
Martins, Andr{\'e} F. T.",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1292/",
doi = "10.18653/v1/P19-1292",
pages = "3050--3056",
abstract = "Automatic post-editing (APE) seeks to automatically refine the output of a black-box machine translation (MT) system through human post-edits. APE systems are usually trained by complementing human post-edited data with large, artificial data generated through back-translations, a time-consuming process often no easier than training a MT system from scratch. in this paper, we propose an alternative where we fine-tune pre-trained BERT models on both the encoder and decoder of an APE system, exploring several parameter sharing strategies. By only training on a dataset of 23K sentences for 3 hours on a single GPU we obtain results that are competitive with systems that were trained on 5M artificial sentences. When we add this artificial data our method obtains state-of-the-art results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="correia-martins-2019-simple">
<titleInfo>
<title>A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gonçalo</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Correia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="given">F</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic post-editing (APE) seeks to automatically refine the output of a black-box machine translation (MT) system through human post-edits. APE systems are usually trained by complementing human post-edited data with large, artificial data generated through back-translations, a time-consuming process often no easier than training a MT system from scratch. in this paper, we propose an alternative where we fine-tune pre-trained BERT models on both the encoder and decoder of an APE system, exploring several parameter sharing strategies. By only training on a dataset of 23K sentences for 3 hours on a single GPU we obtain results that are competitive with systems that were trained on 5M artificial sentences. When we add this artificial data our method obtains state-of-the-art results.</abstract>
<identifier type="citekey">correia-martins-2019-simple</identifier>
<identifier type="doi">10.18653/v1/P19-1292</identifier>
<location>
<url>https://aclanthology.org/P19-1292/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>3050</start>
<end>3056</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning
%A Correia, Gonçalo M.
%A Martins, André F. T.
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F correia-martins-2019-simple
%X Automatic post-editing (APE) seeks to automatically refine the output of a black-box machine translation (MT) system through human post-edits. APE systems are usually trained by complementing human post-edited data with large, artificial data generated through back-translations, a time-consuming process often no easier than training a MT system from scratch. in this paper, we propose an alternative where we fine-tune pre-trained BERT models on both the encoder and decoder of an APE system, exploring several parameter sharing strategies. By only training on a dataset of 23K sentences for 3 hours on a single GPU we obtain results that are competitive with systems that were trained on 5M artificial sentences. When we add this artificial data our method obtains state-of-the-art results.
%R 10.18653/v1/P19-1292
%U https://aclanthology.org/P19-1292/
%U https://doi.org/10.18653/v1/P19-1292
%P 3050-3056
Markdown (Informal)
[A Simple and Effective Approach to Automatic Post-Editing with Transfer Learning](https://aclanthology.org/P19-1292/) (Correia & Martins, ACL 2019)
ACL