@inproceedings{lin-etal-2019-unified,
title = "A Unified Linear-Time Framework for Sentence-Level Discourse Parsing",
author = "Lin, Xiang and
Joty, Shafiq and
Jwalapuram, Prathyusha and
Bari, M Saiful",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1410/",
doi = "10.18653/v1/P19-1410",
pages = "4190--4200",
abstract = "We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4{\%}, and our parser achieves an F1 score of 81.7{\%} on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2019-unified">
<titleInfo>
<title>A Unified Linear-Time Framework for Sentence-Level Discourse Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shafiq</namePart>
<namePart type="family">Joty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Prathyusha</namePart>
<namePart type="family">Jwalapuram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Saiful</namePart>
<namePart type="family">Bari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4%, and our parser achieves an F1 score of 81.7% on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1).</abstract>
<identifier type="citekey">lin-etal-2019-unified</identifier>
<identifier type="doi">10.18653/v1/P19-1410</identifier>
<location>
<url>https://aclanthology.org/P19-1410/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4190</start>
<end>4200</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Unified Linear-Time Framework for Sentence-Level Discourse Parsing
%A Lin, Xiang
%A Joty, Shafiq
%A Jwalapuram, Prathyusha
%A Bari, M. Saiful
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F lin-etal-2019-unified
%X We propose an efficient neural framework for sentence-level discourse analysis in accordance with Rhetorical Structure Theory (RST). Our framework comprises a discourse segmenter to identify the elementary discourse units (EDU) in a text, and a discourse parser that constructs a discourse tree in a top-down fashion. Both the segmenter and the parser are based on Pointer Networks and operate in linear time. Our segmenter yields an F1 score of 95.4%, and our parser achieves an F1 score of 81.7% on the aggregated labeled (relation) metric, surpassing previous approaches by a good margin and approaching human agreement on both tasks (98.3 and 83.0 F1).
%R 10.18653/v1/P19-1410
%U https://aclanthology.org/P19-1410/
%U https://doi.org/10.18653/v1/P19-1410
%P 4190-4200
Markdown (Informal)
[A Unified Linear-Time Framework for Sentence-Level Discourse Parsing](https://aclanthology.org/P19-1410/) (Lin et al., ACL 2019)
ACL