@inproceedings{lin-etal-2019-sequence,
title = "Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks",
author = "Lin, Hongyu and
Lu, Yaojie and
Han, Xianpei and
Sun, Le",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1511",
doi = "10.18653/v1/P19-1511",
pages = "5182--5192",
abstract = "Sequential labeling-based NER approaches restrict each word belonging to at most one entity mention, which will face a serious problem when recognizing nested entity mentions. In this paper, we propose to resolve this problem by modeling and leveraging the head-driven phrase structures of entity mentions, i.e., although a mention can nest other mentions, they will not share the same head word. Specifically, we propose Anchor-Region Networks (ARNs), a sequence-to-nuggets architecture for nested mention detection. ARNs first identify anchor words (i.e., possible head words) of all mentions, and then recognize the mention boundaries for each anchor word by exploiting regular phrase structures. Furthermore, we also design Bag Loss, an objective function which can train ARNs in an end-to-end manner without using any anchor word annotation. Experiments show that ARNs achieve the state-of-the-art performance on three standard nested entity mention detection benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lin-etal-2019-sequence">
<titleInfo>
<title>Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaojie</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sequential labeling-based NER approaches restrict each word belonging to at most one entity mention, which will face a serious problem when recognizing nested entity mentions. In this paper, we propose to resolve this problem by modeling and leveraging the head-driven phrase structures of entity mentions, i.e., although a mention can nest other mentions, they will not share the same head word. Specifically, we propose Anchor-Region Networks (ARNs), a sequence-to-nuggets architecture for nested mention detection. ARNs first identify anchor words (i.e., possible head words) of all mentions, and then recognize the mention boundaries for each anchor word by exploiting regular phrase structures. Furthermore, we also design Bag Loss, an objective function which can train ARNs in an end-to-end manner without using any anchor word annotation. Experiments show that ARNs achieve the state-of-the-art performance on three standard nested entity mention detection benchmarks.</abstract>
<identifier type="citekey">lin-etal-2019-sequence</identifier>
<identifier type="doi">10.18653/v1/P19-1511</identifier>
<location>
<url>https://aclanthology.org/P19-1511</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5182</start>
<end>5192</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks
%A Lin, Hongyu
%A Lu, Yaojie
%A Han, Xianpei
%A Sun, Le
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F lin-etal-2019-sequence
%X Sequential labeling-based NER approaches restrict each word belonging to at most one entity mention, which will face a serious problem when recognizing nested entity mentions. In this paper, we propose to resolve this problem by modeling and leveraging the head-driven phrase structures of entity mentions, i.e., although a mention can nest other mentions, they will not share the same head word. Specifically, we propose Anchor-Region Networks (ARNs), a sequence-to-nuggets architecture for nested mention detection. ARNs first identify anchor words (i.e., possible head words) of all mentions, and then recognize the mention boundaries for each anchor word by exploiting regular phrase structures. Furthermore, we also design Bag Loss, an objective function which can train ARNs in an end-to-end manner without using any anchor word annotation. Experiments show that ARNs achieve the state-of-the-art performance on three standard nested entity mention detection benchmarks.
%R 10.18653/v1/P19-1511
%U https://aclanthology.org/P19-1511
%U https://doi.org/10.18653/v1/P19-1511
%P 5182-5192
Markdown (Informal)
[Sequence-to-Nuggets: Nested Entity Mention Detection via Anchor-Region Networks](https://aclanthology.org/P19-1511) (Lin et al., ACL 2019)
ACL