@inproceedings{rashkin-etal-2019-towards,
title = "Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset",
author = "Rashkin, Hannah and
Smith, Eric Michael and
Li, Margaret and
Boureau, Y-Lan",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1534/",
doi = "10.18653/v1/P19-1534",
pages = "5370--5381",
abstract = "One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others' feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rashkin-etal-2019-towards">
<titleInfo>
<title>Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Rashkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="given">Michael</namePart>
<namePart type="family">Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margaret</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y-Lan</namePart>
<namePart type="family">Boureau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others’ feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.</abstract>
<identifier type="citekey">rashkin-etal-2019-towards</identifier>
<identifier type="doi">10.18653/v1/P19-1534</identifier>
<location>
<url>https://aclanthology.org/P19-1534/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>5370</start>
<end>5381</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset
%A Rashkin, Hannah
%A Smith, Eric Michael
%A Li, Margaret
%A Boureau, Y-Lan
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F rashkin-etal-2019-towards
%X One challenge for dialogue agents is recognizing feelings in the conversation partner and replying accordingly, a key communicative skill. While it is straightforward for humans to recognize and acknowledge others’ feelings in a conversation, this is a significant challenge for AI systems due to the paucity of suitable publicly-available datasets for training and evaluation. This work proposes a new benchmark for empathetic dialogue generation and EmpatheticDialogues, a novel dataset of 25k conversations grounded in emotional situations. Our experiments indicate that dialogue models that use our dataset are perceived to be more empathetic by human evaluators, compared to models merely trained on large-scale Internet conversation data. We also present empirical comparisons of dialogue model adaptations for empathetic responding, leveraging existing models or datasets without requiring lengthy re-training of the full model.
%R 10.18653/v1/P19-1534
%U https://aclanthology.org/P19-1534/
%U https://doi.org/10.18653/v1/P19-1534
%P 5370-5381
Markdown (Informal)
[Towards Empathetic Open-domain Conversation Models: A New Benchmark and Dataset](https://aclanthology.org/P19-1534/) (Rashkin et al., ACL 2019)
ACL