@inproceedings{zhang-2019-mc,
title = "{MC}{\textasciicircum}2: Multi-perspective Convolutional Cube for Conversational Machine Reading Comprehension",
author = "Zhang, Xuanyu",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1622/",
doi = "10.18653/v1/P19-1622",
pages = "6185--6190",
abstract = "Conversational machine reading comprehension (CMRC) extends traditional single-turn machine reading comprehension (MRC) by multi-turn interactions, which requires machines to consider the history of conversation. Most of models simply combine previous questions for conversation understanding and only employ recurrent neural networks (RNN) for reasoning. To comprehend context profoundly and efficiently from different perspectives, we propose a novel neural network model, Multi-perspective Convolutional Cube (MC{\textasciicircum}2). We regard each conversation as a cube. 1D and 2D convolutions are integrated with RNN in our model. To avoid models previewing the next turn of conversation, we also extend causal convolution partially to 2D. Experiments on the Conversational Question Answering (CoQA) dataset show that our model achieves state-of-the-art results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-2019-mc">
<titleInfo>
<title>MC⌃2: Multi-perspective Convolutional Cube for Conversational Machine Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuanyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational machine reading comprehension (CMRC) extends traditional single-turn machine reading comprehension (MRC) by multi-turn interactions, which requires machines to consider the history of conversation. Most of models simply combine previous questions for conversation understanding and only employ recurrent neural networks (RNN) for reasoning. To comprehend context profoundly and efficiently from different perspectives, we propose a novel neural network model, Multi-perspective Convolutional Cube (MC⌃2). We regard each conversation as a cube. 1D and 2D convolutions are integrated with RNN in our model. To avoid models previewing the next turn of conversation, we also extend causal convolution partially to 2D. Experiments on the Conversational Question Answering (CoQA) dataset show that our model achieves state-of-the-art results.</abstract>
<identifier type="citekey">zhang-2019-mc</identifier>
<identifier type="doi">10.18653/v1/P19-1622</identifier>
<location>
<url>https://aclanthology.org/P19-1622/</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>6185</start>
<end>6190</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MC⌃2: Multi-perspective Convolutional Cube for Conversational Machine Reading Comprehension
%A Zhang, Xuanyu
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F zhang-2019-mc
%X Conversational machine reading comprehension (CMRC) extends traditional single-turn machine reading comprehension (MRC) by multi-turn interactions, which requires machines to consider the history of conversation. Most of models simply combine previous questions for conversation understanding and only employ recurrent neural networks (RNN) for reasoning. To comprehend context profoundly and efficiently from different perspectives, we propose a novel neural network model, Multi-perspective Convolutional Cube (MC⌃2). We regard each conversation as a cube. 1D and 2D convolutions are integrated with RNN in our model. To avoid models previewing the next turn of conversation, we also extend causal convolution partially to 2D. Experiments on the Conversational Question Answering (CoQA) dataset show that our model achieves state-of-the-art results.
%R 10.18653/v1/P19-1622
%U https://aclanthology.org/P19-1622/
%U https://doi.org/10.18653/v1/P19-1622
%P 6185-6190
Markdown (Informal)
[MCˆ2: Multi-perspective Convolutional Cube for Conversational Machine Reading Comprehension](https://aclanthology.org/P19-1622/) (Zhang, ACL 2019)
ACL