@inproceedings{bizzoni-ghanimifard-2018-bigrams,
    title = "Bigrams and {B}i{LSTM}s Two Neural Networks for Sequential Metaphor Detection",
    author = "Bizzoni, Yuri  and
      Ghanimifard, Mehdi",
    editor = "Beigman Klebanov, Beata  and
      Shutova, Ekaterina  and
      Lichtenstein, Patricia  and
      Muresan, Smaranda  and
      Wee, Chee",
    booktitle = "Proceedings of the Workshop on Figurative Language Processing",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-0911/",
    doi = "10.18653/v1/W18-0911",
    pages = "91--101",
    abstract = "We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bizzoni-ghanimifard-2018-bigrams">
    <titleInfo>
        <title>Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yuri</namePart>
        <namePart type="family">Bizzoni</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mehdi</namePart>
        <namePart type="family">Ghanimifard</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Figurative Language Processing</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Beata</namePart>
            <namePart type="family">Beigman Klebanov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Shutova</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Patricia</namePart>
            <namePart type="family">Lichtenstein</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Smaranda</namePart>
            <namePart type="family">Muresan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Chee</namePart>
            <namePart type="family">Wee</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.</abstract>
    <identifier type="citekey">bizzoni-ghanimifard-2018-bigrams</identifier>
    <identifier type="doi">10.18653/v1/W18-0911</identifier>
    <location>
        <url>https://aclanthology.org/W18-0911/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>91</start>
            <end>101</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection
%A Bizzoni, Yuri
%A Ghanimifard, Mehdi
%Y Beigman Klebanov, Beata
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%S Proceedings of the Workshop on Figurative Language Processing
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F bizzoni-ghanimifard-2018-bigrams
%X We present and compare two alternative deep neural architectures to perform word-level metaphor detection on text: a bi-LSTM model and a new structure based on recursive feed-forward concatenation of the input. We discuss different versions of such models and the effect that input manipulation - specifically, reducing the length of sentences and introducing concreteness scores for words - have on their performance.
%R 10.18653/v1/W18-0911
%U https://aclanthology.org/W18-0911/
%U https://doi.org/10.18653/v1/W18-0911
%P 91-101
Markdown (Informal)
[Bigrams and BiLSTMs Two Neural Networks for Sequential Metaphor Detection](https://aclanthology.org/W18-0911/) (Bizzoni & Ghanimifard, Fig-Lang 2018)
ACL