@inproceedings{grundkiewicz-heafield-2018-neural,
title = "Neural Machine Translation Techniques for Named Entity Transliteration",
author = "Grundkiewicz, Roman and
Heafield, Kenneth",
editor = "Chen, Nancy and
Banchs, Rafael E. and
Duan, Xiangyu and
Zhang, Min and
Li, Haizhou",
booktitle = "Proceedings of the Seventh Named Entities Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2413",
doi = "10.18653/v1/W18-2413",
pages = "89--94",
abstract = "Transliterating named entities from one language into another can be approached as neural machine translation (NMT) problem, for which we use deep attentional RNN encoder-decoder models. To build a strong transliteration system, we apply well-established techniques from NMT, such as dropout regularization, model ensembling, rescoring with right-to-left models, and back-translation. Our submission to the NEWS 2018 Shared Task on Named Entity Transliteration ranked first in several tracks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="grundkiewicz-heafield-2018-neural">
<titleInfo>
<title>Neural Machine Translation Techniques for Named Entity Transliteration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Grundkiewicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenneth</namePart>
<namePart type="family">Heafield</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Named Entities Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nancy</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rafael</namePart>
<namePart type="given">E</namePart>
<namePart type="family">Banchs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangyu</namePart>
<namePart type="family">Duan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haizhou</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transliterating named entities from one language into another can be approached as neural machine translation (NMT) problem, for which we use deep attentional RNN encoder-decoder models. To build a strong transliteration system, we apply well-established techniques from NMT, such as dropout regularization, model ensembling, rescoring with right-to-left models, and back-translation. Our submission to the NEWS 2018 Shared Task on Named Entity Transliteration ranked first in several tracks.</abstract>
<identifier type="citekey">grundkiewicz-heafield-2018-neural</identifier>
<identifier type="doi">10.18653/v1/W18-2413</identifier>
<location>
<url>https://aclanthology.org/W18-2413</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>89</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Machine Translation Techniques for Named Entity Transliteration
%A Grundkiewicz, Roman
%A Heafield, Kenneth
%Y Chen, Nancy
%Y Banchs, Rafael E.
%Y Duan, Xiangyu
%Y Zhang, Min
%Y Li, Haizhou
%S Proceedings of the Seventh Named Entities Workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F grundkiewicz-heafield-2018-neural
%X Transliterating named entities from one language into another can be approached as neural machine translation (NMT) problem, for which we use deep attentional RNN encoder-decoder models. To build a strong transliteration system, we apply well-established techniques from NMT, such as dropout regularization, model ensembling, rescoring with right-to-left models, and back-translation. Our submission to the NEWS 2018 Shared Task on Named Entity Transliteration ranked first in several tracks.
%R 10.18653/v1/W18-2413
%U https://aclanthology.org/W18-2413
%U https://doi.org/10.18653/v1/W18-2413
%P 89-94
Markdown (Informal)
[Neural Machine Translation Techniques for Named Entity Transliteration](https://aclanthology.org/W18-2413) (Grundkiewicz & Heafield, NEWS 2018)
ACL