@inproceedings{pivovarova-yangarber-2018-comparison,
    title = "Comparison of Representations of Named Entities for Document Classification",
    author = "Pivovarova, Lidia  and
      Yangarber, Roman",
    editor = "Augenstein, Isabelle  and
      Cao, Kris  and
      He, He  and
      Hill, Felix  and
      Gella, Spandana  and
      Kiros, Jamie  and
      Mei, Hongyuan  and
      Misra, Dipendra",
    booktitle = "Proceedings of the Third Workshop on Representation Learning for {NLP}",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3008/",
    doi = "10.18653/v1/W18-3008",
    pages = "64--68",
    abstract = "We explore representations for multi-word names in text classification tasks, on Reuters (RCV1) topic and sector classification. We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than topic classification; replacing NEs with entity types is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pivovarova-yangarber-2018-comparison">
    <titleInfo>
        <title>Comparison of Representations of Named Entities for Document Classification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Lidia</namePart>
        <namePart type="family">Pivovarova</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Roman</namePart>
        <namePart type="family">Yangarber</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on Representation Learning for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Isabelle</namePart>
            <namePart type="family">Augenstein</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kris</namePart>
            <namePart type="family">Cao</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">He</namePart>
            <namePart type="family">He</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Felix</namePart>
            <namePart type="family">Hill</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Spandana</namePart>
            <namePart type="family">Gella</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jamie</namePart>
            <namePart type="family">Kiros</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hongyuan</namePart>
            <namePart type="family">Mei</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dipendra</namePart>
            <namePart type="family">Misra</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We explore representations for multi-word names in text classification tasks, on Reuters (RCV1) topic and sector classification. We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than topic classification; replacing NEs with entity types is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield.</abstract>
    <identifier type="citekey">pivovarova-yangarber-2018-comparison</identifier>
    <identifier type="doi">10.18653/v1/W18-3008</identifier>
    <location>
        <url>https://aclanthology.org/W18-3008/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>64</start>
            <end>68</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparison of Representations of Named Entities for Document Classification
%A Pivovarova, Lidia
%A Yangarber, Roman
%Y Augenstein, Isabelle
%Y Cao, Kris
%Y He, He
%Y Hill, Felix
%Y Gella, Spandana
%Y Kiros, Jamie
%Y Mei, Hongyuan
%Y Misra, Dipendra
%S Proceedings of the Third Workshop on Representation Learning for NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F pivovarova-yangarber-2018-comparison
%X We explore representations for multi-word names in text classification tasks, on Reuters (RCV1) topic and sector classification. We find that: the best way to treat names is to split them into tokens and use each token as a separate feature; NEs have more impact on sector classification than topic classification; replacing NEs with entity types is not an effective strategy; representing tokens by different embeddings for proper names vs. common nouns does not improve results. We highlight the improvements over state-of-the-art results that our CNN models yield.
%R 10.18653/v1/W18-3008
%U https://aclanthology.org/W18-3008/
%U https://doi.org/10.18653/v1/W18-3008
%P 64-68
Markdown (Informal)
[Comparison of Representations of Named Entities for Document Classification](https://aclanthology.org/W18-3008/) (Pivovarova & Yangarber, RepL4NLP 2018)
ACL