@inproceedings{ethayarajh-2018-unsupervised,
title = "Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline",
author = "Ethayarajh, Kawin",
editor = "Augenstein, Isabelle and
Cao, Kris and
He, He and
Hill, Felix and
Gella, Spandana and
Kiros, Jamie and
Mei, Hongyuan and
Misra, Dipendra",
booktitle = "Proceedings of the Third Workshop on Representation Learning for {NLP}",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3012/",
doi = "10.18653/v1/W18-3012",
pages = "91--100",
abstract = "Using a random walk model of text generation, Arora et al. (2017) proposed a strong baseline for computing sentence embeddings: take a weighted average of word embeddings and modify with SVD. This simple method even outperforms far more complex approaches such as LSTMs on textual similarity tasks. In this paper, we first show that word vector length has a confounding effect on the probability of a sentence being generated in Arora et al.`s model. We propose a random walk model that is robust to this confound, where the probability of word generation is inversely related to the angular distance between the word and sentence embeddings. Our approach beats Arora et al.`s by up to 44.4{\%} on textual similarity tasks and is competitive with state-of-the-art methods. Unlike Arora et al.`s method, ours requires no hyperparameter tuning, which means it can be used when there is no labelled data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ethayarajh-2018-unsupervised">
<titleInfo>
<title>Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kawin</namePart>
<namePart type="family">Ethayarajh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Representation Learning for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kris</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamie</namePart>
<namePart type="family">Kiros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyuan</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipendra</namePart>
<namePart type="family">Misra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Using a random walk model of text generation, Arora et al. (2017) proposed a strong baseline for computing sentence embeddings: take a weighted average of word embeddings and modify with SVD. This simple method even outperforms far more complex approaches such as LSTMs on textual similarity tasks. In this paper, we first show that word vector length has a confounding effect on the probability of a sentence being generated in Arora et al.‘s model. We propose a random walk model that is robust to this confound, where the probability of word generation is inversely related to the angular distance between the word and sentence embeddings. Our approach beats Arora et al.‘s by up to 44.4% on textual similarity tasks and is competitive with state-of-the-art methods. Unlike Arora et al.‘s method, ours requires no hyperparameter tuning, which means it can be used when there is no labelled data.</abstract>
<identifier type="citekey">ethayarajh-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W18-3012</identifier>
<location>
<url>https://aclanthology.org/W18-3012/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>91</start>
<end>100</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline
%A Ethayarajh, Kawin
%Y Augenstein, Isabelle
%Y Cao, Kris
%Y He, He
%Y Hill, Felix
%Y Gella, Spandana
%Y Kiros, Jamie
%Y Mei, Hongyuan
%Y Misra, Dipendra
%S Proceedings of the Third Workshop on Representation Learning for NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F ethayarajh-2018-unsupervised
%X Using a random walk model of text generation, Arora et al. (2017) proposed a strong baseline for computing sentence embeddings: take a weighted average of word embeddings and modify with SVD. This simple method even outperforms far more complex approaches such as LSTMs on textual similarity tasks. In this paper, we first show that word vector length has a confounding effect on the probability of a sentence being generated in Arora et al.‘s model. We propose a random walk model that is robust to this confound, where the probability of word generation is inversely related to the angular distance between the word and sentence embeddings. Our approach beats Arora et al.‘s by up to 44.4% on textual similarity tasks and is competitive with state-of-the-art methods. Unlike Arora et al.‘s method, ours requires no hyperparameter tuning, which means it can be used when there is no labelled data.
%R 10.18653/v1/W18-3012
%U https://aclanthology.org/W18-3012/
%U https://doi.org/10.18653/v1/W18-3012
%P 91-100
Markdown (Informal)
[Unsupervised Random Walk Sentence Embeddings: A Strong but Simple Baseline](https://aclanthology.org/W18-3012/) (Ethayarajh, RepL4NLP 2018)
ACL