@inproceedings{gu-etal-2018-incorporating,
title = "Incorporating Topic Aspects for Online Comment Convincingness Evaluation",
author = "Gu, Yunfan and
Wei, Zhongyu and
Xu, Maoran and
Fu, Hao and
Liu, Yang and
Huang, Xuanjing",
editor = "Slonim, Noam and
Aharonov, Ranit",
booktitle = "Proceedings of the 5th Workshop on Argument Mining",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5212/",
doi = "10.18653/v1/W18-5212",
pages = "97--104",
abstract = "In this paper, we propose to incorporate topic aspects information for online comments convincingness evaluation. Our model makes use of graph convolutional network to utilize implicit topic information within a discussion thread to assist the evaluation of convincingness of each single comment. In order to test the effectiveness of our proposed model, we annotate topic information on top of a public dataset for argument convincingness evaluation. Experimental results show that topic information is able to improve the performance for convincingness evaluation. We also make a move to detect topic aspects automatically."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-etal-2018-incorporating">
<titleInfo>
<title>Incorporating Topic Aspects for Online Comment Convincingness Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunfan</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maoran</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranit</namePart>
<namePart type="family">Aharonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose to incorporate topic aspects information for online comments convincingness evaluation. Our model makes use of graph convolutional network to utilize implicit topic information within a discussion thread to assist the evaluation of convincingness of each single comment. In order to test the effectiveness of our proposed model, we annotate topic information on top of a public dataset for argument convincingness evaluation. Experimental results show that topic information is able to improve the performance for convincingness evaluation. We also make a move to detect topic aspects automatically.</abstract>
<identifier type="citekey">gu-etal-2018-incorporating</identifier>
<identifier type="doi">10.18653/v1/W18-5212</identifier>
<location>
<url>https://aclanthology.org/W18-5212/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>97</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Incorporating Topic Aspects for Online Comment Convincingness Evaluation
%A Gu, Yunfan
%A Wei, Zhongyu
%A Xu, Maoran
%A Fu, Hao
%A Liu, Yang
%A Huang, Xuanjing
%Y Slonim, Noam
%Y Aharonov, Ranit
%S Proceedings of the 5th Workshop on Argument Mining
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F gu-etal-2018-incorporating
%X In this paper, we propose to incorporate topic aspects information for online comments convincingness evaluation. Our model makes use of graph convolutional network to utilize implicit topic information within a discussion thread to assist the evaluation of convincingness of each single comment. In order to test the effectiveness of our proposed model, we annotate topic information on top of a public dataset for argument convincingness evaluation. Experimental results show that topic information is able to improve the performance for convincingness evaluation. We also make a move to detect topic aspects automatically.
%R 10.18653/v1/W18-5212
%U https://aclanthology.org/W18-5212/
%U https://doi.org/10.18653/v1/W18-5212
%P 97-104
Markdown (Informal)
[Incorporating Topic Aspects for Online Comment Convincingness Evaluation](https://aclanthology.org/W18-5212/) (Gu et al., ArgMining 2018)
ACL