@inproceedings{dubey-etal-2019-numbers,
title = "{\textquotedblleft}When Numbers Matter!{\textquotedblright}: Detecting Sarcasm in Numerical Portions of Text",
author = "Dubey, Abhijeet and
Kumar, Lakshya and
Somani, Arpan and
Joshi, Aditya and
Bhattacharyya, Pushpak",
editor = "Balahur, Alexandra and
Klinger, Roman and
Hoste, Veronique and
Strapparava, Carlo and
De Clercq, Orphee",
booktitle = "Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = jun,
year = "2019",
address = "Minneapolis, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1309/",
doi = "10.18653/v1/W19-1309",
pages = "72--80",
abstract = "Research in sarcasm detection spans almost a decade. However a particular form of sarcasm remains unexplored: sarcasm expressed through numbers, which we estimate, forms about 11{\%} of the sarcastic tweets in our dataset. The sentence {\textquoteleft}Love waking up at 3 am' is sarcastic because of the number. In this paper, we focus on detecting sarcasm in tweets arising out of numbers. Initially, to get an insight into the problem, we implement a rule-based and a statistical machine learning-based (ML) classifier. The rule-based classifier conveys the crux of the numerical sarcasm problem, namely, incongruity arising out of numbers. The statistical ML classifier uncovers the indicators i.e., features of such sarcasm. The actual system in place, however, are two deep learning (DL) models, CNN and attention network that obtains an F-score of 0.93 and 0.91 on our dataset of tweets containing numbers. To the best of our knowledge, this is the first line of research investigating the phenomenon of sarcasm arising out of numbers, culminating in a detector thereof."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dubey-etal-2019-numbers">
<titleInfo>
<title>“When Numbers Matter!”: Detecting Sarcasm in Numerical Portions of Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhijeet</namePart>
<namePart type="family">Dubey</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lakshya</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpan</namePart>
<namePart type="family">Somani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Joshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Strapparava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphee</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Minneapolis, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research in sarcasm detection spans almost a decade. However a particular form of sarcasm remains unexplored: sarcasm expressed through numbers, which we estimate, forms about 11% of the sarcastic tweets in our dataset. The sentence ‘Love waking up at 3 am’ is sarcastic because of the number. In this paper, we focus on detecting sarcasm in tweets arising out of numbers. Initially, to get an insight into the problem, we implement a rule-based and a statistical machine learning-based (ML) classifier. The rule-based classifier conveys the crux of the numerical sarcasm problem, namely, incongruity arising out of numbers. The statistical ML classifier uncovers the indicators i.e., features of such sarcasm. The actual system in place, however, are two deep learning (DL) models, CNN and attention network that obtains an F-score of 0.93 and 0.91 on our dataset of tweets containing numbers. To the best of our knowledge, this is the first line of research investigating the phenomenon of sarcasm arising out of numbers, culminating in a detector thereof.</abstract>
<identifier type="citekey">dubey-etal-2019-numbers</identifier>
<identifier type="doi">10.18653/v1/W19-1309</identifier>
<location>
<url>https://aclanthology.org/W19-1309/</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>72</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T “When Numbers Matter!”: Detecting Sarcasm in Numerical Portions of Text
%A Dubey, Abhijeet
%A Kumar, Lakshya
%A Somani, Arpan
%A Joshi, Aditya
%A Bhattacharyya, Pushpak
%Y Balahur, Alexandra
%Y Klinger, Roman
%Y Hoste, Veronique
%Y Strapparava, Carlo
%Y De Clercq, Orphee
%S Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2019
%8 June
%I Association for Computational Linguistics
%C Minneapolis, USA
%F dubey-etal-2019-numbers
%X Research in sarcasm detection spans almost a decade. However a particular form of sarcasm remains unexplored: sarcasm expressed through numbers, which we estimate, forms about 11% of the sarcastic tweets in our dataset. The sentence ‘Love waking up at 3 am’ is sarcastic because of the number. In this paper, we focus on detecting sarcasm in tweets arising out of numbers. Initially, to get an insight into the problem, we implement a rule-based and a statistical machine learning-based (ML) classifier. The rule-based classifier conveys the crux of the numerical sarcasm problem, namely, incongruity arising out of numbers. The statistical ML classifier uncovers the indicators i.e., features of such sarcasm. The actual system in place, however, are two deep learning (DL) models, CNN and attention network that obtains an F-score of 0.93 and 0.91 on our dataset of tweets containing numbers. To the best of our knowledge, this is the first line of research investigating the phenomenon of sarcasm arising out of numbers, culminating in a detector thereof.
%R 10.18653/v1/W19-1309
%U https://aclanthology.org/W19-1309/
%U https://doi.org/10.18653/v1/W19-1309
%P 72-80
Markdown (Informal)
[“When Numbers Matter!”: Detecting Sarcasm in Numerical Portions of Text](https://aclanthology.org/W19-1309/) (Dubey et al., WASSA 2019)
ACL
- Abhijeet Dubey, Lakshya Kumar, Arpan Somani, Aditya Joshi, and Pushpak Bhattacharyya. 2019. “When Numbers Matter!”: Detecting Sarcasm in Numerical Portions of Text. In Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 72–80, Minneapolis, USA. Association for Computational Linguistics.