Aashka Trivedi


2024

pdf bib
INDUS: Effective and Efficient Language Models for Scientific Applications
Bishwaranjan Bhattacharjee | Aashka Trivedi | Masayasu Muraoka | Muthukumaran Ramasubramanian | Takuma Udagawa | Iksha Gurung | Nishan Pantha | Rong Zhang | Bharath Dandala | Rahul Ramachandran | Manil Maskey | Kaylin Bugbee | Michael M. Little | Elizabeth Fancher | Irina Gerasimov | Armin Mehrabian | Lauren Sanders | Sylvain V. Costes | Sergi Blanco-Cuaresma | Kelly Lockhart | Thomas Allen | Felix Grezes | Megan Ansdell | Alberto Accomazzi | Yousef El-Kurdi | Davis Wertheimer | Birgit Pfitzmann | Cesar Berrospi Ramis | Michele Dolfi | Rafael Teixeira De Lima | Panagiotis Vagenas | S. Karthik Mukkavilli | Peter W. J. Staar | Sanaz Vahidinia | Ryan McGranaghan | Tsengdar J. Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this insight, we developed INDUS, a comprehensive suite of LLMs tailored for the closely-related domains of Earth science, biology, physics, heliophysics, planetary sciences and astrophysics, and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address NLP tasks, (2) a contrastive-learning based text embedding model trained using a diverse set of datasets to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation for applications which have latency or resource constraints. We also created three new scientific benchmark datasets, Climate-Change NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. We show that our models outperform both general-purpose (RoBERTa) and domain- specific (SciBERT) encoders on these new tasks as well as existing tasks in the domains of interest. Furthermore, we demonstrate the use of these models in two industrial settings- as a retrieval model for large-scale vector search applications and in automatic content tagging systems.

2023

pdf bib
Muted: Multilingual Targeted Offensive Speech Identification and Visualization
Christoph Tillmann | Aashka Trivedi | Sara Rosenthal | Santosh Borse | Rong Zhang | Avirup Sil | Bishwaranjan Bhattacharjee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Offensive language such as hate, abuse, and profanity (HAP) occurs in various content on the web. While previous work has mostly dealt with sentence level annotations, there have been a few recent attempts to identify offensive spans as well. We build upon this work and introduce MUTED, a system to identify multilingual HAP content by displaying offensive arguments and their targets using heat maps to indicate their intensity. MUTED can leverage any transformer-based HAP-classification model and its attention mechanism out-of-the-box to identify toxic spans, without further fine-tuning. In addition, we use the spaCy library to identify the specific targets and arguments for the words predicted by the attention heatmaps. We present the model’s performance on identifying offensive spans and their targets in existing datasets and present new annotations on German text. Finally, we demonstrate our proposed visualization tool on multilingual inputs.

pdf bib
A Comparative Analysis of Task-Agnostic Distillation Methods for Compressing Transformer Language Models
Takuma Udagawa | Aashka Trivedi | Michele Merler | Bishwaranjan Bhattacharjee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large language models have become a vital component in modern NLP, achieving state of the art performance in a variety of tasks. However, they are often inefficient for real-world deployment due to their expensive inference costs. Knowledge distillation is a promising technique to improve their efficiency while retaining most of their effectiveness. In this paper, we reproduce, compare and analyze several representative methods for task-agnostic (general-purpose) distillation of Transformer language models. Our target of study includes Output Distribution (OD) transfer, Hidden State (HS) transfer with various layer mapping strategies, and Multi-Head Attention (MHA) transfer based on MiniLMv2. Through our extensive experiments, we study the effectiveness of each method for various student architectures in both monolingual (English) and multilingual settings. Overall, we show that MHA transfer based on MiniLMv2 is generally the best option for distillation and explain the potential reasons behind its success. Moreover, we show that HS transfer remains as a competitive baseline, especially under a sophisticated layer mapping strategy, while OD transfer consistently lags behind other approaches. Findings from this study helped us deploy efficient yet effective student models for latency-critical applications.