We introduce our probabilistic robustness rewarded data optimization (PRoDO) approach as a framework to enhance the model’s generalization power by selecting training data that optimizes our probabilistic robustness metrics. We use proximal policy optimization (PPO) reinforcement learning to approximately solve the computationally intractable training subset selection problem. The PPO’s reward is defined as our (𝛼,𝜖, 𝛾)-Robustness that measures performance consistency over multiple domains by simulating unknown test sets in real-world scenarios using a leaving-one-out strategy. We demonstrate that our PRoDO effectively filters data that lead to significantly higher prediction accuracy and robustness on unknown-domain test sets. Our experiments achieve up to +17.2% increase of accuracy (+25.5% relatively) in sentiment analysis, and -28.05 decrease of perplexity (-32.1% relatively) in language modeling.In addition, our probabilistic (𝛼,𝜖, 𝛾)-Robustness definition serves as an evaluation metric with higher levels of agreement with human annotations than typical performance-based metrics.
The quality of Natural Language Processing (NLP) models is typically measured by the accuracy or error rate of a predefined test set. Because the evaluation and optimization of these measures are narrowed down to a specific domain like news and cannot be generalized to other domains like Twitter, we often observe that a system reported with human parity results generates surprising errors in real-life use scenarios. We address this weakness with a new approach that uses an NLP quality measure based on robustness. Unlike previous work that has defined robustness using Minimax to bound worst cases, we measure robustness based on the consistency of cross-domain accuracy and introduce the coefficient of variation and (epsilon, gamma)-Robustness. Our measures demonstrate higher agreements with human evaluation than accuracy scores like BLEU on ranking Machine Translation (MT) systems. Our experiments of sentiment analysis and MT tasks show that incorporating our robustness measures into learning objectives significantly enhances the final NLP prediction accuracy over various domains, such as biomedical and social media.
Deep Learning-based NLP systems can be sensitive to unseen tokens and hard to learn with high-dimensional inputs, which critically hinder learning generalization. We introduce an approach by grouping input words based on their semantic diversity to simplify input language representation with low ambiguity. Since the semantically diverse words reside in different contexts, we are able to substitute words with their groups and still distinguish word meanings relying on their contexts. We design several algorithms that compute diverse groupings based on random sampling, geometric distances, and entropy maximization, and we prove formal guarantees for the entropy-based algorithms. Experimental results show that our methods generalize NLP models and demonstrate enhanced accuracy on POS tagging and LM tasks and significant improvements on medium-scale machine translation tasks, up to +6.5 BLEU points. Our source code is available at
https://github.com/abdulrafae/dg.
Natural Language Processing (NLP) tasks are usually performed word by word on textual inputs. We can use arbitrary symbols to represent the linguistic meaning of a word and use these symbols as inputs. As “alternatives” to a text representation, we introduce Soundex, MetaPhone, NYSIIS, logogram to NLP, and develop fixed-output-length coding and its extension using Huffman coding. Each of those codings combines different character/digital sequences and constructs a new vocabulary based on codewords. We find that the integration of those codewords with text provides more reliable inputs to Neural-Network-based NLP systems through redundancy than text-alone inputs. Experiments demonstrate that our approach outperforms the state-of-the-art models on the application of machine translation, language modeling, and part-of-speech tagging. The source code is available at
https://github.com/abdulrafae/coding_nmt.
This paper describes the systems of the CUNY-PKU team in SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA. We introduce a novel model by applying a cascaded MLP and BiLSTM model. Then, we ensemble multiple system-outputs by reparsing. In particular, we introduce a new decoding algorithm for building the UCCA representation. Our system won the first place in one track (French-20K-Open), second places in four tracks (English-Wiki-Open, English-20K-Open, German-20K-Open, and German-20K-Closed), and third place in one track (English-20K-Closed), among all seven tracks.