Adithya Kulkarni
2024
Towards Effective Long Conversation Generation with Dynamic Topic Tracking and Recommendation
Trevor Ashby
|
Adithya Kulkarni
|
Jingyuan Qi
|
Minqian Liu
|
Eunah Cho
|
Vaibhav Kumar
|
Lifu Huang
Proceedings of the 17th International Natural Language Generation Conference
During conversations, the human flow of thoughts may result in topic shifts and evolution. In open-domain dialogue systems, it is crucial to track the topics discussed and recommend relevant topics to be included in responses to have effective conversations. Furthermore, topic evolution is needed to prevent stagnation as conversation length increases. Existing open-domain dialogue systems do not pay sufficient attention to topic evolution and shifting, resulting in performance degradation due to ineffective responses as conversation length increases. To address the shortcomings of existing approaches, we propose EvolvConv. EvolvConv conducts real-time conversation topic and user preference tracking and utilizes the tracking information to evolve and shift topics depending on conversation status. We conduct extensive experiments to validate the topic evolving and shifting capabilities of EvolvConv as conversation length increases. Un-referenced evaluation metric UniEval compare EvolvConv with the baselines. Experimental results show that EvolvConv maintains a smooth conversation flow without abruptly shifting topics; the probability of topic shifting ranges between 5%-8% throughout the conversation. EvolvConv recommends 4.77% more novel topics than the baselines, and the topic evolution follows balanced topic groupings. Furthermore, we conduct user surveys to test the practical viability of EvolvConv. User survey results reveal that responses generated by EvolvConv are preferred 47.8% of the time compared to the baselines and comes second to real human responses.
2023
Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts
Mohna Chakraborty
|
Adithya Kulkarni
|
Qi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent studies have demonstrated that natural-language prompts can help to leverage the knowledge learned by pre-trained language models for the binary sentence-level sentiment classification task. Specifically, these methods utilize few-shot learning settings to fine-tune the sentiment classification model using manual or automatically generated prompts. However, the performance of these methods is sensitive to the perturbations of the utilized prompts. Furthermore, these methods depend on a few labeled instances for automatic prompt generation and prompt ranking. This study aims to find high-quality prompts for the given task in a zero-shot setting. Given a base prompt, our proposed approach automatically generates multiple prompts similar to the base prompt employing positional, reasoning, and paraphrasing techniques and then ranks the prompts using a novel metric. We empirically demonstrate that the top-ranked prompts are high-quality and significantly outperform the base prompt and the prompts generated using few-shot learning for the binary sentence-level sentiment classification task.
2020
OptSLA: an Optimization-Based Approach for Sequential Label Aggregation
Nasim Sabetpour
|
Adithya Kulkarni
|
Qi Li
Findings of the Association for Computational Linguistics: EMNLP 2020
The need for the annotated training dataset on which data-hungry machine learning algorithms feed has increased dramatically with advanced acclaim of machine learning applications. To annotate the data, people with domain expertise are needed, but they are seldom available and expensive to hire. This has lead to the thriving of crowdsourcing platforms such as Amazon Mechanical Turk (AMT). However, the annotations provided by one worker cannot be used directly to train the model due to the lack of expertise. Existing literature in annotation aggregation focuses on binary and multi-choice problems. In contrast, little work has been done on complex tasks such as sequence labeling with imbalanced classes, a ubiquitous task in Natural Language Processing (NLP), and Bio-Informatics. We propose OptSLA, an Optimization-based Sequential Label Aggregation method, that jointly considers the characteristics of sequential labeling tasks, workers reliabilities, and advanced deep learning techniques to conquer the challenge. We evaluate our model on crowdsourced data for named entity recognition task. Our results show that the proposed OptSLA outperforms the state-of-the-art aggregation methods, and the results are easier to interpret.
Search
Co-authors
- Qi Li 2
- Mohna Chakraborty 1
- Trevor Ashby 1
- Jingyuan Qi 1
- Minqian Liu 1
- show all...