2021
pdf
bib
abs
Neural Machine Translation in Low-Resource Setting: a Case Study in English-Marathi Pair
Aakash Banerjee
|
Aditya Jain
|
Shivam Mhaskar
|
Sourabh Dattatray Deoghare
|
Aman Sehgal
|
Pushpak Bhattacharya
Proceedings of Machine Translation Summit XVIII: Research Track
In this paper and we explore different techniques of overcoming the challenges of low-resource in Neural Machine Translation (NMT) and specifically focusing on the case of English-Marathi NMT. NMT systems require a large amount of parallel corpora to obtain good quality translations. We try to mitigate the low-resource problem by augmenting parallel corpora or by using transfer learning. Techniques such as Phrase Table Injection (PTI) and back-translation and mixing of language corpora are used for enhancing the parallel data; whereas pivoting and multilingual embeddings are used to leverage transfer learning. For pivoting and Hindi comes in as assisting language for English-Marathi translation. Compared to baseline transformer model and a significant improvement trend in BLEU score is observed across various techniques. We have done extensive manual and automatic and qualitative evaluation of our systems. Since the trend in Machine Translation (MT) today is post-editing and measuring of Human Effort Reduction (HER) and we have given our preliminary observations on Translation Edit Rate (TER) vs. BLEU score study and where TER is regarded as a measure of HER.
pdf
bib
abs
Evaluating the Performance of Back-translation for Low Resource English-Marathi Language Pair: CFILT-IITBombay @ LoResMT 2021
Aditya Jain
|
Shivam Mhaskar
|
Pushpak Bhattacharyya
Proceedings of the 4th Workshop on Technologies for MT of Low Resource Languages (LoResMT2021)
In this paper, we discuss the details of the various Machine Translation (MT) systems that we have submitted for the English-Marathi LoResMT task. As a part of this task, we have submitted three different Neural Machine Translation (NMT) systems; a Baseline English-Marathi system, a Baseline Marathi-English system, and an English-Marathi system that is based on the back-translation technique. We explore the performance of these NMT systems between English and Marathi languages, which forms a low resource language pair due to unavailability of sufficient parallel data. We also explore the performance of the back-translation technique when the back-translated data is obtained from NMT systems that are trained on a very less amount of data. From our experiments, we observe that the back-translation technique can help improve the MT quality over the baseline for the English-Marathi language pair.
pdf
bib
abs
Multilingual Machine Translation Systems at WAT 2021: One-to-Many and Many-to-One Transformer based NMT
Shivam Mhaskar
|
Aditya Jain
|
Aakash Banerjee
|
Pushpak Bhattacharyya
Proceedings of the 8th Workshop on Asian Translation (WAT2021)
In this paper, we present the details of the systems that we have submitted for the WAT 2021 MultiIndicMT: An Indic Language Multilingual Task. We have submitted two separate multilingual NMT models: one for English to 10 Indic languages and another for 10 Indic languages to English. We discuss the implementation details of two separate multilingual NMT approaches, namely one-to-many and many-to-one, that makes use of a shared decoder and a shared encoder, respectively. From our experiments, we observe that the multilingual NMT systems outperforms the bilingual baseline MT systems for each of the language pairs under consideration.