Aiqi Jiang
2024
Re-examining Sexism and Misogyny Classification with Annotator Attitudes
Aiqi Jiang
|
Nikolas Vitsakis
|
Tanvi Dinkar
|
Gavin Abercrombie
|
Ioannis Konstas
Findings of the Association for Computational Linguistics: EMNLP 2024
Gender-Based Violence (GBV) is an increasing problem online, but existing datasets fail to capture the plurality of possible annotator perspectives or ensure the representation of affected groups. We revisit two important stages in the moderation pipeline for GBV: (1) manual data labelling; and (2) automated classification. For (1), we examine two datasets to investigate the relationship between annotator identities and attitudes and the responses they give to two GBV labelling tasks. To this end, we collect demographic and attitudinal information from crowd-sourced annotators using three validated surveys from Social Psychology. We find that higher Right Wing Authoritarianism scores are associated with a higher propensity to label text as sexist, while for Social Dominance Orientation and Neosexist Attitudes, higher scores are associated with a negative tendency to do so.For (2), we conduct classification experiments using Large Language Models and five prompting strategies, including infusing prompts with annotator information. We find: (i) annotator attitudes affect the ability of classifiers to predict their labels; (ii) including attitudinal information can boost performance when we use well-structured brief annotator descriptions; and (iii) models struggle to reflect the increased complexity and imbalanced classes of the new label sets.
Revisiting Annotation of Online Gender-Based Violence
Gavin Abercrombie
|
Nikolas Vitsakis
|
Aiqi Jiang
|
Ioannis Konstas
Proceedings of the 3rd Workshop on Perspectivist Approaches to NLP (NLPerspectives) @ LREC-COLING 2024
Online Gender-Based Violence is an increasing problem, but existing datasets fail to capture the plurality of possible annotator perspectives or ensure representation of affected groups. In a pilot study, we revisit the annotation of a widely used dataset to investigate the relationship between annotator identities and underlying attitudes and the responses they give to a sexism labelling task. We collect demographic and attitudinal information about crowd-sourced annotators using two validated surveys from Social Psychology. While we do not find any correlation between underlying attitudes and annotation behaviour, ethnicity does appear to be related to annotator responses for this pool of crowd-workers. We also conduct initial classification experiments using Large Language Models, finding that a state-of-the-art model trained with human feedback benefits from our broad data collection to perform better on the new labels. This study represents the initial stages of a wider data collection project, in which we aim to develop a taxonomy of GBV in partnership with affected stakeholders.
2023
Resources for Automated Identification of Online Gender-Based Violence: A Systematic Review
Gavin Abercrombie
|
Aiqi Jiang
|
Poppy Gerrard-abbott
|
Ioannis Konstas
|
Verena Rieser
The 7th Workshop on Online Abuse and Harms (WOAH)
Online Gender-Based Violence (GBV), such as misogynistic abuse is an increasingly prevalent problem that technological approaches have struggled to address. Through the lens of the GBV framework, which is rooted in social science and policy, we systematically review 63 available resources for automated identification of such language. We find the datasets are limited in a number of important ways, such as their lack of theoretical grounding and stakeholder input, static nature, and focus on certain media platforms. Based on this review, we recommend development of future resources rooted in sociological expertise andcentering stakeholder voices, namely GBV experts and people with lived experience of GBV.
Search
Fix data
Co-authors
- Gavin Abercrombie 3
- Ioannis Konstas 3
- Nikolas Vitsakis 2
- Tanvi Dinkar 1
- Poppy Gerrard-abbott 1
- show all...