Temporal expression (TE) normalization is a well-studied problem. However, the predominately used rule-based systems are highly restricted to specific settings, and upcoming machine learning approaches suffer from a lack of labeled data. In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization using in-context learning to inject task, document, and example information into the model. We explore various sample selection strategies to retrieve the most relevant set of examples. By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model.Our experiments show competitive results to models designed for this task. In particular, our method achieves large performance improvements for non-standard settings by dynamically including relevant examples during inference.
Code-mixed text sequences often lead to challenges in the task of correct identification of Part-Of-Speech tags. However, lexical dependencies created while alternating between multiple languages can be leveraged to improve the performance of such tasks. Indian languages with rich morphological structure and highly inflected nature provide such an opportunity. In this work, we exploit these sub-label dependencies using conditional random fields (CRFs) by defining feature extraction functions on three distinct language pairs (Hindi-English, Bengali-English, and Telugu-English). Our results demonstrate a significant increase in the tagging performance if the feature extraction functions employ the rich inner structure of such languages.
The #MeToo movement on social media platforms initiated discussions over several facets of sexual harassment in our society. Prior work by the NLP community for automated identification of the narratives related to sexual abuse disclosures barely explored this social phenomenon as an independent task. However, emotional attributes associated with textual conversations related to the #MeToo social movement are complexly intertwined with such narratives. We formulate the task of identifying narratives related to the sexual abuse disclosures in online posts as a joint modeling task that leverages their emotional attributes through multitask learning. Our results demonstrate that positive knowledge transfer via context-specific shared representations of a flexible cross-stitched parameter sharing model helps establish the inherent benefit of jointly modeling tasks related to sexual abuse disclosures with emotion classification from the text in homogeneous and heterogeneous settings. We show how for more domain-specific tasks related to sexual abuse disclosures such as sarcasm identification and dialogue act (refutation, justification, allegation) classification, homogeneous multitask learning is helpful, whereas for more general tasks such as stance and hate speech detection, heterogeneous multitask learning with emotion classification works better.
In this paper, we present a semi-supervised bootstrapping approach to detect product or service related complaints in social media. Our approach begins with a small collection of annotated samples which are used to identify a preliminary set of linguistic indicators pertinent to complaints. These indicators are then used to expand the dataset. The expanded dataset is again used to extract more indicators. This process is applied for several iterations until we can no longer find any new indicators. We evaluated this approach on a Twitter corpus specifically to detect complaints about transportation services. We started with an annotated set of 326 samples of transportation complaints, and after four iterations of the approach, we collected 2,840 indicators and over 3,700 tweets. We annotated a random sample of 700 tweets from the final dataset and observed that nearly half the samples were actual transportation complaints. Lastly, we also studied how different features based on semantics, orthographic properties, and sentiment contribute towards the prediction of complaints.