Ali Basirat


2024

pdf bib
Contribution of Linguistic Typology to Universal Dependency Parsing: An Empirical Investigation
Ali Basirat | Navid Baradaran Hemmati
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Universal Dependencies (UD) is a global initiative to create a standard annotation for the dependency syntax of human languages. Addressing its deviation from typological principles, this study presents an empirical investigation of a typologically motivated transformation of UD proposed by William Croft. Our findings underscore the significance of the transformations across diverse languages and highlight their advantages and limitations.

2022

pdf bib
Nucleus Composition in Transition-based Dependency Parsing
Joakim Nivre | Ali Basirat | Luise Dürlich | Adam Moss
Computational Linguistics, Volume 48, Issue 4 - December 2022

Dependency-based approaches to syntactic analysis assume that syntactic structure can be analyzed in terms of binary asymmetric dependency relations holding between elementary syntactic units. Computational models for dependency parsing almost universally assume that an elementary syntactic unit is a word, while the influential theory of Lucien Tesnière instead posits a more abstract notion of nucleus, which may be realized as one or more words. In this article, we investigate the effect of enriching computational parsing models with a concept of nucleus inspired by Tesnière. We begin by reviewing how the concept of nucleus can be defined in the framework of Universal Dependencies, which has become the de facto standard for training and evaluating supervised dependency parsers, and explaining how composition functions can be used to make neural transition-based dependency parsers aware of the nuclei thus defined. We then perform an extensive experimental study, using data from 20 languages to assess the impact of nucleus composition across languages with different typological characteristics, and utilizing a variety of analytical tools including ablation, linear mixed-effects models, diagnostic classifiers, and dimensionality reduction. The analysis reveals that nucleus composition gives small but consistent improvements in parsing accuracy for most languages, and that the improvement mainly concerns the analysis of main predicates, nominal dependents, clausal dependents, and coordination structures. Significant factors explaining the rate of improvement across languages include entropy in coordination structures and frequency of certain function words, in particular determiners. Analysis using dimensionality reduction and diagnostic classifiers suggests that nucleus composition increases the similarity of vectors representing nuclei of the same syntactic type.

2021

pdf bib
Syntactic Nuclei in Dependency Parsing – A Multilingual Exploration
Ali Basirat | Joakim Nivre
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Standard models for syntactic dependency parsing take words to be the elementary units that enter into dependency relations. In this paper, we investigate whether there are any benefits from enriching these models with the more abstract notion of nucleus proposed by Tesnière. We do this by showing how the concept of nucleus can be defined in the framework of Universal Dependencies and how we can use composition functions to make a transition-based dependency parser aware of this concept. Experiments on 12 languages show that nucleus composition gives small but significant improvements in parsing accuracy. Further analysis reveals that the improvement mainly concerns a small number of dependency relations, including nominal modifiers, relations of coordination, main predicates, and direct objects.

2020

pdf bib
Cross-lingual Embeddings Reveal Universal and Lineage-Specific Patterns in Grammatical Gender Assignment
Hartger Veeman | Marc Allassonnière-Tang | Aleksandrs Berdicevskis | Ali Basirat
Proceedings of the 24th Conference on Computational Natural Language Learning

Grammatical gender is assigned to nouns differently in different languages. Are all factors that influence gender assignment idiosyncratic to languages or are there any that are universal? Using cross-lingual aligned word embeddings, we perform two experiments to address these questions about language typology and human cognition. In both experiments, we predict the gender of nouns in language X using a classifier trained on the nouns of language Y, and take the classifier’s accuracy as a measure of transferability of gender systems. First, we show that for 22 Indo-European languages the transferability decreases as the phylogenetic distance increases. This correlation supports the claim that some gender assignment factors are idiosyncratic, and as the languages diverge, the proportion of shared inherited idiosyncrasies diminishes. Second, we show that when the classifier is trained on two Afro-Asiatic languages and tested on the same 22 Indo-European languages (or vice versa), its performance is still significantly above the chance baseline, thus showing that universal factors exist and, moreover, can be captured by word embeddings. When the classifier is tested across families and on inanimate nouns only, the performance is still above baseline, indicating that the universal factors are not limited to biological sex.

2017

pdf bib
From Raw Text to Universal Dependencies - Look, No Tags!
Miryam de Lhoneux | Yan Shao | Ali Basirat | Eliyahu Kiperwasser | Sara Stymne | Yoav Goldberg | Joakim Nivre
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03.

pdf bib
Real-valued Syntactic Word Vectors (RSV) for Greedy Neural Dependency Parsing
Ali Basirat | Joakim Nivre
Proceedings of the 21st Nordic Conference on Computational Linguistics

2013

pdf bib
Automatic Enhancement of LTAG Treebank
Farzaneh Zarei | Ali Basirat | Heshaam Faili | Maryam Sadat Mirian
Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013

2011

pdf bib
Constructing Linguistically Motivated Structures from Statistical Grammars
Ali Basirat | Heshaam Faili
Proceedings of the International Conference Recent Advances in Natural Language Processing 2011