Ana Barić


2024

pdf bib
Actor Identification in Discourse: A Challenge for LLMs?
Ana Barić | Sebastian Padó | Sean Papay
Proceedings of the 5th Workshop on Computational Approaches to Discourse (CODI 2024)

The identification of political actors who put forward claims in public debate is a crucial step in the construction of discourse networks, which are helpful to analyze societal debates. Actor identification is, however, rather challenging: Often, the locally mentioned speaker of a claim is only a pronoun (“He proposed that [claim]”), so recovering the canonical actor name requires discourse understanding. We compare a traditional pipeline of dedicated NLP components (similar to those applied to the related task of coreference) with a LLM, which appears a good match for this generation task. Evaluating on a corpus of German actors in newspaper reports, we find surprisingly that the LLM performs worse. Further analysis reveals that the LLM is very good at identifying the right reference, but struggles to generate the correct canonical form. This points to an underlying issue in LLMs with controlling generated output. Indeed, a hybrid model combining the LLM with a classifier to normalize its output substantially outperforms both initial models.

pdf bib
Beyond Prompt Brittleness: Evaluating the Reliability and Consistency of Political Worldviews in LLMs
Tanise Ceron | Neele Falk | Ana Barić | Dmitry Nikolaev | Sebastian Padó
Transactions of the Association for Computational Linguistics, Volume 12

Due to the widespread use of large language models (LLMs), we need to understand whether they embed a specific “worldview” and what these views reflect. Recent studies report that, prompted with political questionnaires, LLMs show left-liberal leanings (Feng et al., 2023; Motoki et al., 2024). However, it is as yet unclear whether these leanings are reliable (robust to prompt variations) and whether the leaning is consistent across policies and political leaning. We propose a series of tests which assess the reliability and consistency of LLMs’ stances on political statements based on a dataset of voting-advice questionnaires collected from seven EU countries and annotated for policy issues. We study LLMs ranging in size from 7B to 70B parameters and find that their reliability increases with parameter count. Larger models show overall stronger alignment with left-leaning parties but differ among policy programs: They show a (left-wing) positive stance towards environment protection, social welfare state, and liberal society but also (right-wing) law and order, with no consistent preferences in the areas of foreign policy and migration.

2023

pdf bib
Target Two Birds With One SToNe: Entity-Level Sentiment and Tone Analysis in Croatian News Headlines
Ana Barić | Laura Majer | David Dukić | Marijana Grbeša-zenzerović | Jan Snajder
Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)

Sentiment analysis is often used to examine how different actors are portrayed in the media, and analysis of news headlines is of particular interest due to their attention-grabbing role. We address the task of entity-level sentiment analysis from Croatian news headlines. We frame the task as targeted sentiment analysis (TSA), explicitly differentiating between sentiment toward a named entity and the overall tone of the headline. We describe SToNe, a new dataset for this task with sentiment and tone labels. We implement several neural benchmark models, utilizing single- and multi-task training, and show that TSA can benefit from tone information. Finally, we gauge the difficulty of this task by leveraging dataset cartography.