Andrey Sakhovskiy


2024

pdf bib
Biomedical Entity Representation with Graph-Augmented Multi-Objective Transformer
Andrey Sakhovskiy | Natalia Semenova | Artur Kadurin | Elena Tutubalina
Findings of the Association for Computational Linguistics: NAACL 2024

Modern biomedical concept representations are mostly trained on synonymous concept names from a biomedical knowledge base, ignoring the inter-concept interactions and a concept’s local neighborhood in a knowledge base graph. In this paper, we introduce Biomedical Entity Representation with a Graph-Augmented Multi-Objective Transformer (BERGAMOT), which adopts the power of pre-trained language models (LMs) and graph neural networks to capture both inter-concept and intra-concept interactions from the multilingual UMLS graph. To obtain fine-grained graph representations, we introduce two additional graph-based objectives: (i) a node-level contrastive objective and (ii) the Deep Graph Infomax (DGI) loss, which maximizes the mutual information between a local subgraph and a high-level graph summary. We apply contrastive loss on textual and graph representations to make them less sensitive to surface forms and enable intermodal knowledge exchange. BERGAMOT achieves state-of-the-art results in zero-shot entity linking without task-specific supervision on 4 of 5 languages of the Mantra corpus and on 8 of 10 languages of the XL-BEL benchmark.

pdf bib
Lost in Translation: Chemical Language Models and the Misunderstanding of Molecule Structures
Veronika Ganeeva | Andrey Sakhovskiy | Kuzma Khrabrov | Andrey Savchenko | Artur Kadurin | Elena Tutubalina
Findings of the Association for Computational Linguistics: EMNLP 2024

The recent integration of chemistry with natural language processing (NLP) has advanced drug discovery. Molecule representation in language models (LMs) is crucial in enhancing chemical understanding. We propose Augmented Molecular Retrieval (AMORE), a flexible zero-shot framework for assessment of Chemistry LMs of different natures: trained solely on molecules for chemical tasks and on a combined corpus of natural language texts and string-based structures. The framework relies on molecule augmentations that preserve an underlying chemical, such as kekulization and cycle replacements. We evaluate encoder-only and generative LMs by calculating a metric based on the similarity score between distributed representations of molecules and their augmentations. Our experiments on ChEBI-20 and QM9 benchmarks show that these models exhibit significantly lower scores than graph-based molecular models trained without language modeling objectives. Additionally, our results on the molecule captioning task for cross-domain models, MolT5 and Text+Chem T5, demonstrate that the lower the representation-based evaluation metrics, the lower the classical text generation metrics like ROUGE and METEOR.

pdf bib
Biomedical Concept Normalization over Nested Entities with Partial UMLS Terminology in Russian
Natalia Loukachevitch | Andrey Sakhovskiy | Elena Tutubalina
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We present a new manually annotated dataset of PubMed abstracts for concept normalization in Russian. It contains over 23,641 entity mentions in 756 documents linked to 4,544 unique concepts from the UMLS ontology. Compared to existing corpora, we explore two novel annotation characteristics: the nestedness of named entities and the incompleteness of the Russian medical terminology in UMLS. 4,424 entity mentions are linked to 1,535 unique English concepts absent in the Russian part of the UMLS ontology. We present several baselines for normalization over nested named entities obtained with state-of-the-art models such as SapBERT. Our experimental results show that models pre-trained on graph structural data from UMLS achieve superior performance in a zero-shot setting on bilingual terminology.

pdf bib
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing
Dmitry Ustalov | Yanjun Gao | Alexander Panchenko | Elena Tutubalina | Irina Nikishina | Arti Ramesh | Andrey Sakhovskiy | Ricardo Usbeck | Gerald Penn | Marco Valentino
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing

pdf bib
TextGraphs 2024 Shared Task on Text-Graph Representations for Knowledge Graph Question Answering
Andrey Sakhovskiy | Mikhail Salnikov | Irina Nikishina | Aida Usmanova | Angelie Kraft | Cedric Möller | Debayan Banerjee | Junbo Huang | Longquan Jiang | Rana Abdullah | Xi Yan | Dmitry Ustalov | Elena Tutubalina | Ricardo Usbeck | Alexander Panchenko
Proceedings of TextGraphs-17: Graph-based Methods for Natural Language Processing

This paper describes the results of the Knowledge Graph Question Answering (KGQA) shared task that was co-located with the TextGraphs 2024 workshop. In this task, given a textual question and a list of entities with the corresponding KG subgraphs, the participating system should choose the entity that correctly answers the question. Our competition attracted thirty teams, four of which outperformed our strong ChatGPT-based zero-shot baseline. In this paper, we overview the participating systems and analyze their performance according to a large-scale automatic evaluation. To the best of our knowledge, this is the first competition aimed at the KGQA problem using the interaction between large language models (LLMs) and knowledge graphs.

2023

pdf bib
Graph-Enriched Biomedical Language Models: A Research Proposal
Andrey Sakhovskiy | Alexander Panchenko | Elena Tutubalina
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop

2021

pdf bib
KFU NLP Team at SMM4H 2021 Tasks: Cross-lingual and Cross-modal BERT-based Models for Adverse Drug Effects
Andrey Sakhovskiy | Zulfat Miftahutdinov | Elena Tutubalina
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

This paper describes neural models developed for the Social Media Mining for Health (SMM4H) 2021 Shared Task. We participated in two tasks on classification of tweets that mention an adverse drug effect (ADE) (Tasks 1a & 2) and two tasks on extraction of ADE concepts (Tasks 1b & 1c). For classification, we investigate the impact of joint use of BERTbased language models and drug embeddings obtained by chemical structure BERT-based encoder. The BERT-based multimodal models ranked first and second on classification of Russian (Task 2) and English tweets (Task 1a) with the F1 scores of 57% and 61%, respectively. For Task 1b and 1c, we utilized the previous year’s best solution based on the EnDR-BERT model with additional corpora. Our model achieved the best results in Task 1c, obtaining an F1 of 29%.

2020

pdf bib
KFU NLP Team at SMM4H 2020 Tasks: Cross-lingual Transfer Learning with Pretrained Language Models for Drug Reactions
Zulfat Miftahutdinov | Andrey Sakhovskiy | Elena Tutubalina
Proceedings of the Fifth Social Media Mining for Health Applications Workshop & Shared Task

This paper describes neural models developed for the Social Media Mining for Health (SMM4H) 2020 shared tasks. Specifically, we participated in two tasks. We investigate the use of a language representation model BERT pretrained on a large-scale corpus of 5 million health-related user reviews in English and Russian. The ensemble of neural networks for extraction and normalization of adverse drug reactions ranked first among 7 teams at the SMM4H 2020 Task 3 and obtained a relaxed F1 of 46%. The BERT-based multilingual model for classification of English and Russian tweets that report adverse reactions ranked second among 16 and 7 teams at two first subtasks of the SMM4H 2019 Task 2 and obtained a relaxed F1 of 58% on English tweets and 51% on Russian tweets.