Ariel Goldstein
2024
Systematic Biases in LLM Simulations of Debates
Amir Taubenfeld
|
Yaniv Dover
|
Roi Reichart
|
Ariel Goldstein
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The emergence of Large Language Models (LLMs), has opened exciting possibilities for constructing computational simulations designed to replicate human behavior accurately. Current research suggests that LLM-based agents become increasingly human-like in their performance, sparking interest in using these AI agents as substitutes for human participants in behavioral studies. However, LLMs are complex statistical learners without straightforward deductive rules, making them prone to unexpected behaviors. Hence, it is crucial to study and pinpoint the key behavioral distinctions between humans and LLM-based agents. In this study, we highlight the limitations of LLMs in simulating human interactions, particularly focusing on LLMs’ ability to simulate political debates on topics that are important aspects of people’s day-to-day lives and decision-making processes. Our findings indicate a tendency for LLM agents to conform to the model’s inherent social biases despite being directed to debate from certain political perspectives. This tendency results in behavioral patterns that seem to deviate from well-established social dynamics among humans. We reinforce these observations using an automatic self-fine-tuning method, which enables us to manipulate the biases within the LLM and demonstrate that agents subsequently align with the altered biases. These results underscore the need for further research to develop methods that help agents overcome these biases, a critical step toward creating more realistic simulations.
Do Zombies Understand? A Choose-Your-Own-Adventure Exploration of Machine Cognition
Ariel Goldstein
|
Gabriel Stanovsky
Findings of the Association for Computational Linguistics: ACL 2024
Recent advances in LLMs have sparked a debate on whether they understand text. In this position paper, we argue that opponents in this debate hold different definitions for understanding, and particularly differ in their view on the role of consciousness. To substantiate this claim, we propose a thought experiment involving an open-source chatbot Z which excels on every possible benchmark, seemingly without subjective experience. We ask whether Z is capable of understanding, and show that different schools of thought within seminal AI research seem to answer this question differently, uncovering their terminological disagreement. Moving forward, we propose two distinct working definitions for understanding which explicitly acknowledge the question of consciousness, and draw connections with a rich literature in philosophy, psychology and neuroscience.
2023
Decoding Stumpers: Large Language Models vs. Human Problem-Solvers
Alon Goldstein
|
Miriam Havin
|
Roi Reichart
|
Ariel Goldstein
Findings of the Association for Computational Linguistics: EMNLP 2023
This paper investigates the problem-solving capabilities of Large Language Models (LLMs) by evaluating their performance on stumpers, unique single-step intuition problems that pose challenges for human solvers but are easily verifiable. We compare the performance of four state-of-the-art LLMs (Davinci-2, Davinci-3, GPT-3.5-Turbo, GPT-4) to human participants. Our findings reveal that the new-generation LLMs excel in solving stumpers and surpass human performance. However, humans exhibit superior skills in verifying solutions to the same problems. This research enhances our understanding of LLMs’ cognitive abilities and provides insights for enhancing their problem-solving potential across various domains.
Search
Fix data
Co-authors
- Roi Reichart 2
- Yaniv Dover 1
- Alon Goldstein 1
- Miriam Havin 1
- Gabriel Stanovsky 1
- show all...