In this paper, we present a multi-level alignment pretraining method in a unified architecture formulti-lingual semantic parsing. In this architecture, we use an adversarial training method toalign the space of different languages and use sentence level and word level parallel corpus assupervision information to align the semantic of different languages. Finally, we jointly train themulti-level alignment and semantic parsing tasks. We conduct experiments on a publicly avail-able multi-lingual semantic parsing dataset ATIS and a newly constructed dataset. Experimentalresults show that our model outperforms state-of-the-art methods on both datasets.
News headline generation aims to produce a short sentence to attract readers to read the news. One news article often contains multiple keyphrases that are of interest to different users, which can naturally have multiple reasonable headlines. However, most existing methods focus on the single headline generation. In this paper, we propose generating multiple headlines with keyphrases of user interests, whose main idea is to generate multiple keyphrases of interest to users for the news first, and then generate multiple keyphrase-relevant headlines. We propose a multi-source Transformer decoder, which takes three sources as inputs: (a) keyphrase, (b) keyphrase-filtered article, and (c) original article to generate keyphrase-relevant, high-quality, and diverse headlines. Furthermore, we propose a simple and effective method to mine the keyphrases of interest in the news article and build a first large-scale keyphrase-aware news headline corpus, which contains over 180K aligned triples of <news article, headline, keyphrase>. Extensive experimental comparisons on the real-world dataset show that the proposed method achieves state-of-the-art results in terms of quality and diversity.
In this work, we propose an aggregation method to combine the Bidirectional Encoder Representations from Transformer (BERT) with a MatchLSTM layer for Sequence Matching. Given a sentence pair, we extract the output representations of it from BERT. Then we extend BERT with a MatchLSTM layer to get further interaction of the sentence pair for sequence matching tasks. Taking natural language inference as an example, we split BERT output into two parts, which is from premise sentence and hypothesis sentence. At each position of the hypothesis sentence, both the weighted representation of the premise sentence and the representation of the current token are fed into LSTM. We jointly train the aggregation layer and pre-trained layer for sequence matching. We conduct an experiment on two publicly available datasets, WikiQA and SNLI. Experiments show that our model achieves significantly improvement compared with state-of-the-art methods on both datasets.