Recent studies have pointed out that many well-developed Visual Question Answering (VQA) systems suffer from bias problem. Despite the remarkable performance gained on In-Distribution (ID) datasets, the VQA model might merely capture the superficial correlation from question to answer rather than showing real reasoning abilities. Therefore, when switching to Out-of-Distribution (OOD) dataset, whose test distribution is unknown or even reversed with the training set, significant drops might be demonstrated. Although efforts have been devoted to easing the negative bias effect brought by language prior and analysing its inherent cause, they are still limited by the following two aspects. First, most current debiasing methods achieve promising OOD generalization ability with a major sacrifice of the ID performance. Second, existing researches are restricted by exploiting comprehensive biases, since weakening the language bias is mainly focused, while only a few works consider vision bias. In this paper, we investigate a straightforward way to mitigate bias problem for VQA task. Specifically, we reduce bias effect by subtracting bias score from standard VQA base score. Based on such a direct strategy, we design two bias learning branches to detect more bias information, which are combined with a dynamical constraint loss to alleviate the problem of over-correction and insufficient debiasing effect. We evaluate our method on the challenging VQA v2.0 and VQA-CP V2,0 datasets and the proposed method achievessignificant improvement.
Despite the revolutionary advances made by Transformer in Neural Machine Translation (NMT), inference efficiency remains an obstacle due to the heavy use of attention operations in auto-regressive decoding. We thereby propose a lightweight attention structure called Attention Refinement Network (ARN) for speeding up Transformer. Specifically, we design a weighted residual network, which reconstructs the attention by reusing the features across layers. To further improve the Transformer efficiency, we merge the self-attention and cross-attention components for parallel computing. Extensive experiments on ten WMT machine translation tasks show that the proposed model yields an average of 1.35x faster (with almost no decrease in BLEU) over the state-of-the-art inference implementation. Results on widely used WMT14 En-De machine translation tasks demonstrate that our model achieves a higher speed-up, giving highly competitive performance compared to AAN and SAN models with fewer parameter numbers.
This paper considers continual learning of large-scale pretrained neural machine translation model without accessing the previous training data or introducing model separation. We argue that the widely used regularization-based methods, which perform multi-objective learning with an auxiliary loss, suffer from the misestimate problem and cannot always achieve a good balance between the previous and new tasks. To solve the problem, we propose a two-stage training method based on the local features of the real loss. We first search low forgetting risk regions, where the model can retain the performance on the previous task as the parameters are updated, to avoid the catastrophic forgetting problem. Then we can continually train the model within this region only with the new training data to fit the new task. Specifically, we propose two methods to search the low forgetting risk regions, which are based on the curvature of loss and the impacts of the parameters on the model output, respectively. We conduct experiments on domain adaptation and more challenging language adaptation tasks, and the experimental results show that our method can achieve significant improvements compared with several strong baselines.
Text-video retrieval focuses on two aspects: cross-modality interaction and video-language encoding. Currently, the mainstream approach is to train a joint embedding space for multimodal interactions. However, there are structural and semantic differences between text and video, making this approach challenging for fine-grained understanding. In order to solve this, we propose an end-to-end graph-based hierarchical aggregation network for text-video retrieval according to the hierarchy possessed by text and video. We design a token-level weighted network to refine intra-modality representations and construct a graph-based message passing attention network for global-local alignment across modality. We conduct experiments on the public datasets MSR-VTT-9K, MSR-VTT-7K and MSVD, and achieve Recall@1 of 73.0%, 65.6%, and 64.0% , which is 25.7%, 16.5%, and 14.2% better than the current state-of-the-art model.
Multimodal machine translation (MMT) aims to improve translation quality by equipping the source sentence with its corresponding image. Despite the promising performance, MMT models still suffer the problem of input degradation: models focus more on textual information while visual information is generally overlooked. In this paper, we endeavor to improve MMT performance by increasing visual awareness from an information theoretic perspective. In detail, we decompose the informative visual signals into two parts: source-specific information and target-specific information. We use mutual information to quantify them and propose two methods for objective optimization to better leverage visual signals. Experiments on two datasets demonstrate that our approach can effectively enhance the visual awareness of MMT model and achieve superior results against strong baselines.
Encoder pre-training is promising in end-to-end Speech Translation (ST), given the fact that speech-to-translation data is scarce. But ST encoders are not simple instances of Automatic Speech Recognition (ASR) or Machine Translation (MT) encoders. For example, we find that ASR encoders lack the global context representation, which is necessary for translation, whereas MT encoders are not designed to deal with long but locally attentive acoustic sequences. In this work, we propose a Stacked Acoustic-and-Textual Encoding (SATE) method for speech translation. Our encoder begins with processing the acoustic sequence as usual, but later behaves more like an MT encoder for a global representation of the input sequence. In this way, it is straightforward to incorporate the pre-trained models into the system. Also, we develop an adaptor module to alleviate the representation inconsistency between the pre-trained ASR encoder and MT encoder, and develop a multi-teacher knowledge distillation method to preserve the pre-training knowledge. Experimental results on the LibriSpeech En-Fr and MuST-C En-De ST tasks show that our method achieves state-of-the-art BLEU scores of 18.3 and 25.2. To our knowledge, we are the first to develop an end-to-end ST system that achieves comparable or even better BLEU performance than the cascaded ST counterpart when large-scale ASR and MT data is available.
This paper describes TenTrans’ submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance of related high-resource languages. We mainly utilize back-translation, pivot-based methods, multilingual models, pre-trained model fine-tuning, and in-domain knowledge transfer to improve the translation quality. On the test set, our best-submitted system achieves an average of 43.45 case-sensitive BLEU scores across all low-resource pairs. Our data, code, and pre-trained models used in this work are available in TenTrans evaluation examples.
This paper describes TenTrans large-scale multilingual machine translation system for WMT 2021. We participate in the Small Track 2 in five South East Asian languages, thirty directions: Javanese, Indonesian, Malay, Tagalog, Tamil, English. We mainly utilized forward/back-translation, in-domain data selection, knowledge distillation, and gradual fine-tuning from the pre-trained model FLORES-101. We find that forward/back-translation significantly improves the translation results, data selection and gradual fine-tuning are particularly effective during adapting domain, while knowledge distillation brings slight performance improvement. Also, model averaging is used to further improve the translation performance based on these systems. Our final system achieves an average BLEU score of 28.89 across thirty directions on the test set.
The paper describes the TenTrans’s submissions to the WMT 2021 Efficiency Shared Task. We explore training a variety of smaller compact transformer models using the teacher-student setup. Our model is trained by our self-developed open-source multilingual training platform TenTrans-Py. We also release an open-source high-performance inference toolkit for transformer models and the code is written in C++ completely. All additional optimizations are built on top of the inference engine including attention caching, kernel fusion, early-stop, and several other optimizations. In our submissions, the fastest system can translate more than 22,000 tokens per second with a single Tesla P4 while maintaining 38.36 BLEU on En-De newstest2019. Our trained models and more details are available in TenTrans-Decoding competition examples.
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT’16 En-De.
This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP randomly replaces some words in the source sentence with their translation words in the target language. Specifically, we firstly perform lexicon induction with unsupervised word embedding mapping between the source and target languages, and then randomly replace some words in the input sentence with their translation words according to the extracted translation lexicons. CSP adopts the encoder-decoder framework: its encoder takes the code-mixed sentence as input, and its decoder predicts the replaced fragment of the input sentence. In this way, CSP is able to pre-train the NMT model by explicitly making the most of the alignment information extracted from the source and target monolingual corpus. Additionally, we relieve the pretrain-finetune discrepancy caused by the artificial symbols like [mask]. To verify the effectiveness of the proposed method, we conduct extensive experiments on unsupervised and supervised NMT. Experimental results show that CSP achieves significant improvements over baselines without pre-training or with other pre-training methods.
This paper describes the Neural Machine Translation (NMT) system of TencentFmRD for Chinese↔English news translation tasks of WMT 2018. Our systems are neural machine translation systems trained with our original system TenTrans. TenTrans is an improved NMT system based on Transformer self-attention mechanism. In addition to the basic settings of Transformer training, TenTrans uses multi-model fusion techniques, multiple features reranking, different segmentation models and joint learning. Finally, we adopt some data selection strategies to fine-tune the trained system and achieve a stable performance improvement. Our Chinese→English system achieved the second best BLEU scores and fourth best cased BLEU scores among all WMT18 submitted systems.