Bonnie J Dorr
2024
AMREx: AMR for Explainable Fact Verification
Chathuri Jayaweera
|
Sangpil Youm
|
Bonnie J Dorr
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)
With the advent of social media networks and the vast amount of information circulating through them, automatic fact verification is an essential component to prevent the spread of misinformation. It is even more useful to have fact verification systems that provide explanations along with their classifications to ensure accurate predictions. To address both of these requirements, we implement AMREx, an Abstract Meaning Representation (AMR)-based veracity prediction and explanation system for fact verification using a combination of Smatch, an AMR evaluation metric to measure meaning containment and textual similarity, and demonstrate its effectiveness in producing partially explainable justifications using two community standard fact verification datasets, FEVER and AVeriTeC. AMREx surpasses the AVeriTec baseline accuracy showing the effectiveness of our approach for real-world claim verification. It follows an interpretable pipeline and returns an explainable AMR node mapping to clarify the system’s veracity predictions when applicable. We further demonstrate that AMREx output can be used to prompt LLMs to generate natural-language explanations using the AMR mappings as a guide to lessen the probability of hallucinations.
Modeling Bilingual Sentence Processing: Evaluating RNN and Transformer Architectures for Cross-Language Structural Priming
Demi Zhang
|
Bushi Xiao
|
Chao Gao
|
Sangpil Youm
|
Bonnie J Dorr
Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
This study evaluates the performance of Recurrent Neural Network (RNN) and Transformer models in replicating cross-language structural priming, a key indicator of abstract grammatical representations in human language processing. Focusing on Chinese-English priming, which involves two typologically distinct languages, we examine how these models handle the robust phenomenon of structural priming, where exposure to a particular sentence structure increases the likelihood of selecting a similar structure subsequently. Our findings indicate that transformers outperform RNNs in generating primed sentence structures, with accuracy rates that exceed 25.84% to 33. 33%. This challenges the conventional belief that human sentence processing primarily involves recurrent and immediate processing and suggests a role for cue-based retrieval mechanisms. This work contributes to our understanding of how computational models may reflect human cognitive processes across diverse language families.
Search