Brian Formento
2024
SemRoDe: Macro Adversarial Training to Learn Representations that are Robust to Word-Level Attacks
Brian Formento
|
Wenjie Feng
|
Chuan-Sheng Foo
|
Anh Tuan Luu
|
See-Kiong Ng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Language models (LMs) are indispensable tools for natural language processing tasks, but their vulnerability to adversarial attacks remains a concern. While current research has explored adversarial training techniques, their improvements to defend against word-level attacks have been limited. In this work, we propose a novel approach called Semantic Robust Defence (SemRoDe), a Macro Adversarial Training strategy to enhance the robustness of LMs. Drawing inspiration from recent studies in the image domain, we investigate and later confirm that in a discrete data setting such as language, adversarial samples generated via word substitutions do indeed belong to an adversarial domain exhibiting a high Wasserstein distance from the base domain. Our method learns a robust representation that bridges these two domains. We hypothesize that if samples were not projected into an adversarial domain, but instead to a domain with minimal shift, it would improve attack robustness. We align the domains by incorporating a new distance-based objective. With this, our model is able to learn more generalized representations by aligning the model’s high-level output features and therefore better handling unseen adversarial samples. This method can be generalized across word embeddings, even when they share minimal overlap at both vocabulary and word-substitution levels. To evaluate the effectiveness of our approach, we conduct experiments on BERT and RoBERTa models on three datasets. The results demonstrate promising state-of-the-art robustness.
2023
Using Punctuation as an Adversarial Attack on Deep Learning-Based NLP Systems: An Empirical Study
Brian Formento
|
Chuan Sheng Foo
|
Luu Anh Tuan
|
See Kiong Ng
Findings of the Association for Computational Linguistics: EACL 2023
This work empirically investigates punctuation insertions as adversarial attacks on NLP systems. Data from experiments on three tasks, five datasets, and six models with four attacks show that punctuation insertions, when limited to a few symbols (apostrophes and hyphens), are a superior attack vector compared to character insertions due to 1) a lower after-attack accuracy (Aaft-atk) than alphabetical character insertions; 2) higher semantic similarity between the resulting and original texts; and 3) a resulting text that is easier and faster to read as assessed with the Test of Word Reading Efficiency (TOWRE)). The tests also indicate that 4) grammar checking does not mitigate punctuation insertions and 5) punctuation insertions outperform word-level attacks in settings with a limited number of word synonyms and queries to the victim’s model. Our findings indicate that inserting a few punctuation types that result in easy-to-read samples is a general attack mechanism. In light of this threat, we assess the impact of punctuation insertions, potential mitigations, the mitigation’s tradeoffs, punctuation insertion’s worst-case scenarios and summarize our findings in a qualitative casual map, so that developers can design safer, more secure systems.