Bruno Lepri


2024

pdf bib
Do LLMs suffer from Multi-Party Hangover? A Diagnostic Approach to Addressee Recognition and Response Selection in Conversations
Nicolò Penzo | Maryam Sajedinia | Bruno Lepri | Sara Tonelli | Marco Guerini
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Assessing the performance of systems to classify Multi-Party Conversations (MPC) is challenging due to the interconnection between linguistic and structural characteristics of conversations. Conventional evaluation methods often overlook variances in model behavior across different levels of structural complexity on interaction graphs. In this work, we propose a methodological pipeline to investigate model performance across specific structural attributes of conversations. As a proof of concept we focus on Response Selection and Addressee Recognition tasks, to diagnose model weaknesses. To this end, we extract representative diagnostic subdatasets with a fixed number of users and a good structural variety from a large and open corpus of online MPCs. We further frame our work in terms of data minimization, avoiding the use of original usernames to preserve privacy, and propose alternatives to using original text messages. Results show that response selection relies more on the textual content of conversations, while addressee recognition requires capturing their structural dimension. Using an LLM in a zero-shot setting, we further highlight how sensitivity to prompt variations is task-dependent.

pdf bib
Putting Context in Context: the Impact of Discussion Structure on Text Classification
Nicolò Penzo | Antonio Longa | Bruno Lepri | Sara Tonelli | Marco Guerini
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Current text classification approaches usually focus on the content to be classified. Contextual aspects (both linguistic and extra-linguistic) are usually neglected, even in tasks based on online discussions. Still in many cases the multi-party and multi-turn nature of the context from which these elements are selected can be fruitfully exploited. In this work, we propose a series of experiments on a large dataset for stance detection in English, in which we evaluate the contribution of different types of contextual information, i.e. linguistic, structural and temporal, by feeding them as natural language input into a transformer-based model. We also experiment with different amounts of training data and analyse the topology of local discussion networks in a privacy-compliant way. Results show that structural information can be highly beneficial to text classification but only under certain circumstances (e.g. depending on the amount of training data and on discussion chain complexity). Indeed, we show that contextual information on smaller datasets from other classification tasks does not yield significant improvements. Our framework, based on local discussion networks, allows the integration of structural information while minimising user profiling, thus preserving their privacy.

2017

pdf bib
RAMBLE ON: Tracing Movements of Popular Historical Figures
Stefano Menini | Rachele Sprugnoli | Giovanni Moretti | Enrico Bignotti | Sara Tonelli | Bruno Lepri
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics

We present RAMBLE ON, an application integrating a pipeline for frame-based information extraction and an interface to track and display movement trajectories. The code of the extraction pipeline and a navigator are freely available; moreover we display in a demonstrator the outcome of a case study carried out on trajectories of notable persons of the XX Century.