Chengming Wang


2022

pdf bib
Commonsense Knowledge Salience Evaluation with a Benchmark Dataset in E-commerce
Yincen Qu | Ningyu Zhang | Hui Chen | Zelin Dai | Chengming Wang | Xiaoyu Wang | Qiang Chen | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

In e-commerce, the salience of commonsense knowledge (CSK) is beneficial for widespread applications such as product search and recommendation. For example, when users search for “running” in e-commerce, they would like to find products highly related to running, such as “running shoes” rather than “shoes”. Nevertheless, many existing CSK collections rank statements solely by confidence scores, and there is no information about which ones are salient from a human perspective. In this work, we define the task of supervised salience evaluation, where given a CSK triple, the model is required to learn whether the triple is salient or not. In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation. We conduct experiments in the dataset with several representative baseline models. The experimental results show that salience evaluation is a hard task where models perform poorly on our evaluation set. We further propose a simple but effective approach, PMI-tuning, which shows promise for solving this novel problem. Code is available in https://github.com/OpenBGBenchmark/OpenBG-CSK.

2020

pdf bib
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Zequn Sun | Muhao Chen | Wei Hu | Chengming Wang | Jian Dai | Wei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.