Chiyu Song


2025

pdf bib
Dynamics of Instruction Fine-Tuning for Chinese Large Language Models
Chiyu Song | Zhanchao Zhou | Jianhao Yan | Yuejiao Fei | Zhenzhong Lan | Yue Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). While numerous studies have examined the impact of factors such as data volume and model size on English models, the scaling properties of instruction tuning in other languages remain largely unexplored. In this work, we systematically investigate the effects of data quantity, model size, and data construction methods on instruction tuning for Chinese LLMs. We utilize a newly curated dataset, DoIT, which includes over 40,000 high-quality instruction instances covering ten underlying abilities, such as creative writing, code generation, and logical reasoning. Our experiments, conducted on models ranging from 7b to 33b parameters, yield three key findings: (i) While these factors directly affect overall model performance, some abilities are more responsive to scaling, whereas others demonstrate significant resistance. (ii) The scaling sensitivity of different abilities to these factors can be explained by two features: Complexity and Transference. (iii) By tailoring training strategies to their varying sensitivities, specific abilities can be efficiently learned, enhancing performance on two public benchmarks.

2023

pdf bib
Uni-Encoder: A Fast and Accurate Response Selection Paradigm for Generation-Based Dialogue Systems
Chiyu Song | Hongliang He | Haofei Yu | Pengfei Fang | Leyang Cui | Zhenzhong Lan
Findings of the Association for Computational Linguistics: ACL 2023

Sample-and-rank is a key decoding strategy for modern generation-based dialogue systems. It helps achieve diverse and high-quality responses by selecting an answer from a small pool of generated candidates. The current state-of-the-art ranking methods mainly use an encoding paradigm called Cross-Encoder, which separately encodes each context-candidate pair and ranks the candidates according to their fitness scores. However, Cross-Encoder repeatedly encodes the same lengthy context for each candidate, resulting in high computational costs. Poly-Encoder addresses the above problems by reducing the interaction between context and candidates, but with a price of performance drop. In this work, we develop a new paradigm called Uni-Encoder, that keeps the full attention over each pair as in Cross-Encoder while only encoding the context once, as in Poly-Encoder. Uni-Encoder encodes all the candidates with the context in one forward pass. We use the same positional embedding for all candidates to ensure they are treated equally and design a new attention mechanism to avoid confusion. Our Uni-Encoder can simulate other ranking paradigms using different attention and response concatenation methods. Extensive experiments show that our proposed paradigm achieves new state-of-the-art results on four benchmark datasets with high computational efficiency. For instance, it improves R10@1 by 2.9% with an approximately 4X faster inference speed on the Ubuntu V2 dataset.