Typologically diverse benchmarks are increasingly created to track the progress achieved in multilingual NLP. Linguistic diversity of these data sets is typically measured as the number of languages or language families included in the sample, but such measures do not consider structural properties of the included languages. In this paper, we propose assessing linguistic diversity of a data set against a reference language sample as a means of maximising linguistic diversity in the long run. We represent languages as sets of features and apply a version of the Jaccard index suitable for comparing sets of measures. In addition to the features extracted from typological data bases, we propose an automatic text-based measure, which can be used as a means of overcoming the well-known problem of data sparsity in manually collected features. Our diversity score is interpretable in terms of linguistic features and can identify the types of languages that are not represented in a data set. Using our method, we analyse a range of popular multilingual data sets (UD, Bible100, mBERT, XTREME, XGLUE, XNLI, XCOPA, TyDiQA, XQuAD). In addition to ranking these data sets, we find, for example, that (poly)synthetic languages are missing in almost all of them.
Human languages are often claimed to fundamentally differ from other communication systems. But what is it exactly that unites them as a separate category? This article proposes to approach this problem – here termed the Zipfian Challenge – as a standard classification task. A corpus with textual material from diverse writing systems and languages, as well as other symbolic and non-symbolic systems, is provided. These are subsequently used to train and test binary classification algorithms, assigning labels “writing” and “non-writing” to character strings of the test sets. The performance is generally high, reaching 98% accuracy for the best algorithms. Human languages emerge to have a statistical fingerprint: large unit inventories, high entropy, and few repetitions of adjacent units. This fingerprint can be used to tease them apart from other symbolic and non-symbolic systems.
Byte-pair encoding (BPE) is widely used in NLP for performing subword tokenization. It uncovers redundant patterns for compressing the data, and hence alleviates the sparsity problem in downstream applications. Subwords discovered during the first merge operations tend to have the most substantial impact on the compression of texts. However, the structural underpinnings of this effect have not been analyzed cross-linguistically. We conduct in-depth analyses across 47 typologically diverse languages and three parallel corpora, and thereby show that the types of recurrent patterns that have the strongest impact on compression are an indicator of morphological typology. For languages with richer inflectional morphology there is a preference for highly productive subwords on the early merges, while for languages with less inflectional morphology, idiosyncratic subwords are more prominent. Both types of patterns contribute to efficient compression. Counter to the common perception that BPE subwords are not linguistically relevant, we find patterns across languages that resemble those described in traditional typology. We thus propose a novel way to characterize languages according to their BPE subword properties, inspired by the notion of morphological productivity in linguistics. This allows us to have language vectors that encode typological knowledge induced from raw text. Our approach is easily applicable to a wider range of languages and texts, as it does not require annotated data or any external linguistic knowledge. We discuss its potential contributions to quantitative typology and multilingual NLP.
We present the TeDDi sample, a diversity sample of text data for language comparison and multilingual Natural Language Processing. The TeDDi sample currently features 89 languages based on the typological diversity sample in the World Atlas of Language Structures. It consists of more than 20k texts and is accompanied by open-source corpus processing tools. The aim of TeDDi is to facilitate text-based quantitative analysis of linguistic diversity. We describe in detail the TeDDi sample, how it was created, data availability, and its added value through for NLP and linguistic research.
The distributions of orthographic word types are very different across languages due to typological characteristics, different writing traditions and potentially other factors. The wide range of cross-linguistic diversity is still a major challenge for NLP and the study of language. We use BPE and information-theoretic measures to investigate if distributions become similar under specific levels of subword tokenization. We perform a cross-linguistic comparison, following incremental merges of BPE (we go from characters to words) for 47 diverse languages. We show that text entropy values (a feature of probability distributions) tend to converge at specific subword levels: relatively few BPE merges (around 350) lead to the most similar distributions across languages. Additionally, we analyze the interaction between subword and word-level distributions and show that our findings can be interpreted in light of the ongoing discussion regarding different types of morphological complexity.
We describe the collection of transcription corrections and grammatical error annotations for the CrowdED Corpus of spoken English monologues on business topics. The corpus recordings were crowdsourced from native speakers of English and learners of English with German as their first language. The new transcriptions and annotations are obtained from different crowdworkers: we analyse the 1108 new crowdworker submissions and propose that they can be used for automatic transcription post-editing and grammatical error correction for speech. To further explore the data we train grammatical error detection models with various configurations including pre-trained and contextual word representations as input, additional features and auxiliary objectives, and extra training data from written error-annotated corpora. We find that a model concatenating pre-trained and contextual word representations as input performs best, and that additional information does not lead to further performance gains.
We evaluate corpus-based measures of linguistic complexity obtained using Universal Dependencies (UD) treebanks. We propose a method of estimating robustness of the complexity values obtained using a given measure and a given treebank. The results indicate that measures of syntactic complexity might be on average less robust than those of morphological complexity. We also estimate the validity of complexity measures by comparing the results for very similar languages and checking for unexpected differences. We show that some of those differences that arise can be diminished by using parallel treebanks and, more importantly from the practical point of view, by harmonizing the language-specific solutions in the UD annotation.
Language complexity is an intriguing phenomenon argued to play an important role in both language learning and processing. The need to compare languages with regard to their complexity resulted in a multitude of approaches and methods, ranging from accounts targeting specific structural features to global quantification of variation more generally. In this paper, we investigate the degree to which morphological complexity measures are mutually correlated in a sample of more than 500 languages of 101 language families. We use human expert judgements from the World Atlas of Language Structures (WALS), and compare them to four quantitative measures automatically calculated from language corpora. These consist of three previously defined corpus-derived measures, which are all monolingual, and one new measure based on automatic word-alignment across pairs of languages. We find strong correlations between all the measures, illustrating that both expert judgements and automated approaches converge to similar complexity ratings, and can be used interchangeably.
The morphological complexity of languages differs widely and changes over time. Pathways of change are often driven by the interplay of multiple competing factors, and are hard to disentangle. We here focus on a paradigmatic scenario of language change: the reduction of morphological complexity from Latin towards the Romance languages. To establish a causal explanation for this phenomenon, we employ three lines of evidence: 1) analyses of parallel corpora to measure the complexity of words in actual language production, 2) applications of NLP tools to further tease apart the contribution of inflectional morphology to word complexity, and 3) experimental data from artificial language learning, which illustrate the learning pressures at play when morphology simplifies. These three lines of evidence converge to show that pressures associated with imperfect language learning are good candidates to causally explain the reduction in morphological complexity in the Latin-to-Romance scenario. More generally, we argue that combining corpus, computational and experimental evidence is the way forward in historical linguistics and linguistic typology.
We announce the release of the CROWDED CORPUS: a pair of speech corpora collected via crowdsourcing, containing a native speaker corpus of English (CROWDED_ENGLISH), and a corpus of German/English bilinguals (CROWDED_BILINGUAL). Release 1 of the CROWDED CORPUS contains 1000 recordings amounting to 33,400 tokens collected from 80 speakers and is freely available to other researchers. We recruited participants via the Crowdee application for Android. Recruits were prompted to respond to business-topic questions of the type found in language learning oral tests. We then used the CrowdFlower web application to pass these recordings to crowdworkers for transcription and annotation of errors and sentence boundaries. Finally, the sentences were tagged and parsed using standard natural language processing tools. We propose that crowdsourcing is a valid and economical method for corpus collection, and discuss the advantages and disadvantages of this approach.