Chu Fei Luo
2024
Misinformation with Legal Consequences (MisLC): A New Task Towards Harnessing Societal Harm of Misinformation
Chu Fei Luo
|
Radin Shayanfar
|
Rohan V Bhambhoria
|
Samuel Dahan
|
Xiaodan Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024
Misinformation, defined as false or inaccurate information, can result in significant societal harm when it is spread with malicious or even unintentional intent. The rapid online information exchange necessitates advanced detection mechanisms to mitigate misinformation-induced harm. Existing research, however, has predominantly focused on the veracity of information, overlooking the legal implications and consequences of misinformation. In this work, we take a novel angle to consolidate the definition of misinformation detection using legal issues as a measurement of societal ramifications, aiming to bring interdisciplinary efforts to tackle misinformation and its consequence. We introduce a new task: Misinformation with Legal Consequence (MisLC), which leverages definitions from a wide range of legal domains covering 4 broader legal topics and 11 fine-grained legal issues, including hate speech, election laws, and privacy regulations. For this task, we advocate a two-step dataset curation approach that utilizes crowd-sourced checkworthiness and expert evaluations of misinformation. We provide insights about the MisLC task through empirical evidence, from the problem definition to experiments and expert involvement. While the latest large language models and retrieval-augmented generation are effective baselines for the task, we find they are still far from replicating expert performance.
2023
Prototype-Based Interpretability for Legal Citation Prediction
Chu Fei Luo
|
Rohan Bhambhoria
|
Samuel Dahan
|
Xiaodan Zhu
Findings of the Association for Computational Linguistics: ACL 2023
Deep learning has made significant progress in the past decade, and demonstrates potential to solve problems with extensive social impact. In high-stakes decision making areas such as law, experts often require interpretability for automatic systems to be utilized in practical settings. In this work, we attempt to address these requirements applied to the important problem of legal citation prediction (LCP). We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions. After initial experimental results, we refine the target citation predictions with the feedback of legal experts. Additionally, we introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers. Our study builds on and leverages the state-of-the-art language processing models for law, while addressing vital considerations for high-stakes tasks with practical societal impact.
Search