Clayton T. Morrison

Also published as: Clayton T Morrison


2025

pdf bib
Variable Extraction for Model Recovery in Scientific Literature
Chunwei Liu | Enrique Noriega-Atala | Adarsh Pyarelal | Clayton T Morrison | Mike Cafarella
Proceedings of the 1st Workshop on AI and Scientific Discovery: Directions and Opportunities

Due to the increasing productivity in the scientific community, it is difficult to keep up with the literature without the assistance of AI methods. This paper evaluates various methods for extracting mathematical model variables from epidemiological studies, such as ‘infection rate (𝛼),” ‘recovery rate (𝛾),” and ‘mortality rate (𝜇).” Variable extraction appears to be a basic task, but plays a pivotal role in recovering models from scientific literature. Once extracted, we can use these variables for automatic mathematical modeling, simulation, and replication of published results. We also introduce a benchmark dataset comprising manually-annotated variable descriptions and variable values extracted from scientific papers. Our analysis shows that LLM-based solutions perform the best. Despite the incremental benefits of combining rule-based extraction outputs with LLMs, the leap in performance attributed to the transfer-learning and instruction-tuning capabilities of LLMs themselves is far more significant. This investigation demonstrates the potential of LLMs to enhance automatic comprehension of scientific artifacts and for automatic model recovery and simulation.

2024

pdf bib
When and Where Did it Happen? An Encoder-Decoder Model to Identify Scenario Context
Enrique Noriega-Atala | Robert Vacareanu | Salena Torres Ashton | Adarsh Pyarelal | Clayton T Morrison | Mihai Surdeanu
Findings of the Association for Computational Linguistics: EMNLP 2024

We introduce a neural architecture finetuned for the task of scenario context generation: The relevant location and time of an event or entity mentioned in text. Contextualizing information extraction helps to scope the validity of automated finings when aggregating them as knowledge graphs. Our approach uses a high-quality curated dataset of time and location annotations in a corpus of epidemiology papers to train an encoder-decoder architecture. We also explored the use of data augmentation techniques during training. Our findings suggest that a relatively small fine-tuned encoder-decoder model performs better than out-of-the-box LLMs and semantic role labeling parsers to accurate predict the relevant scenario information of a particular entity or event.

2023

pdf bib
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
Mihai Surdeanu | Ellen Riloff | Laura Chiticariu | Dayne Frietag | Gus Hahn-Powell | Clayton T. Morrison | Enrique Noriega-Atala | Rebecca Sharp | Marco Valenzuela-Escarcega
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

2022

pdf bib
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
Laura Chiticariu | Yoav Goldberg | Gus Hahn-Powell | Clayton T. Morrison | Aakanksha Naik | Rebecca Sharp | Mihai Surdeanu | Marco Valenzuela-Escárcega | Enrique Noriega-Atala
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning