2024
pdf
bib
abs
Words Worth a Thousand Pictures: Measuring and Understanding Perceptual Variability in Text-to-Image Generation
Raphael Tang
|
Crystina Zhang
|
Lixinyu Xu
|
Yao Lu
|
Wenyan Li
|
Pontus Stenetorp
|
Jimmy Lin
|
Ferhan Ture
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Diffusion models are the state of the art in text-to-image generation, but their perceptual variability remains understudied. In this paper, we examine how prompts affect image variability in black-box diffusion-based models. We propose W1KP, a human-calibrated measure of variability in a set of images, bootstrapped from existing image-pair perceptual distances. Current datasets do not cover recent diffusion models, thus we curate three test sets for evaluation. Our best perceptual distance outperforms nine baselines by up to 18 points in accuracy, and our calibration matches graded human judgements 78% of the time. Using W1KP, we study prompt reusability and show that Imagen prompts can be reused for 10-50 random seeds before new images become too similar to already generated images, while Stable Diffusion XL and DALL-E 3 can be reused 50-200 times. Lastly, we analyze 56 linguistic features of real prompts, finding that the prompt’s length, CLIP embedding norm, concreteness, and word senses influence variability most. As far as we are aware, we are the first to analyze diffusion variability from a visuolinguistic perspective. Our project page is at http://w1kp.com.
pdf
bib
abs
FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture
Wenyan Li
|
Crystina Zhang
|
Jiaang Li
|
Qiwei Peng
|
Raphael Tang
|
Li Zhou
|
Weijia Zhang
|
Guimin Hu
|
Yifei Yuan
|
Anders Søgaard
|
Daniel Hershcovich
|
Desmond Elliott
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Food is a rich and varied dimension of cultural heritage, crucial to both individuals and social groups. To bridge the gap in the literature on the often-overlooked regional diversity in this domain, we introduce FoodieQA, a manually curated, fine-grained image-text dataset capturing the intricate features of food cultures across various regions in China. We evaluate vision–language Models (VLMs) and large language models (LLMs) on newly collected, unseen food images and corresponding questions. FoodieQA comprises three multiple-choice question-answering tasks where models need to answer questions based on multiple images, a single image, and text-only descriptions, respectively. While LLMs excel at text-based question answering, surpassing human accuracy, the open-sourced VLMs still fall short by 41% on multi-image and 21% on single-image VQA tasks, although closed-weights models perform closer to human levels (within 10%). Our findings highlight that understanding food and its cultural implications remains a challenging and under-explored direction.
pdf
bib
abs
“Knowing When You Don’t Know”: A Multilingual Relevance Assessment Dataset for Robust Retrieval-Augmented Generation
Nandan Thakur
|
Luiz Bonifacio
|
Crystina Zhang
|
Odunayo Ogundepo
|
Ehsan Kamalloo
|
David Alfonso-Hermelo
|
Xiaoguang Li
|
Qun Liu
|
Boxing Chen
|
Mehdi Rezagholizadeh
|
Jimmy Lin
Findings of the Association for Computational Linguistics: EMNLP 2024
Retrieval-Augmented Generation (RAG) grounds Large Language Model (LLM) output by leveraging external knowledge sources to reduce factual hallucinations. However, prior work lacks a comprehensive evaluation of different language families, making it challenging to evaluate LLM robustness against errors in external retrieved knowledge. To overcome this, we establish **NoMIRACL**, a human-annotated dataset for evaluating LLM robustness in RAG across 18 typologically diverse languages. NoMIRACL includes both a non-relevant and a relevant subset. Queries in the non-relevant subset contain passages judged as non-relevant, whereas queries in the relevant subset include at least a single judged relevant passage. We measure relevance assessment using: (i) *hallucination rate*, measuring model tendency to hallucinate when the answer is not present in passages in the non-relevant subset, and (ii) *error rate*, measuring model inaccuracy to recognize relevant passages in the relevant subset. In our work, we observe that most models struggle to balance the two capacities. Models such as LLAMA-2 and Orca-2 achieve over 88% hallucination rate on the non-relevant subset. Mistral and LLAMA-3 hallucinate less but can achieve up to a 74.9% error rate on the relevant subset. Overall, GPT-4 is observed to provide the best tradeoff on both subsets, highlighting future work necessary to improve LLM robustness. NoMIRACL dataset and evaluation code are available at: https://github.com/project-miracl/nomiracl.
pdf
bib
abs
Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking in Large Language Models
Raphael Tang
|
Crystina Zhang
|
Xueguang Ma
|
Jimmy Lin
|
Ferhan Ture
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) exhibit positional bias in how they use context, which especially affects listwise ranking. To address this, we propose permutation self-consistency, a form of self-consistency over the ranking list outputs of black-box LLMs. Our key idea is to marginalize out different list orders in the prompt to produce an order-independent ranking with less positional bias. First, given some input prompt, we repeatedly shuffle the list in the prompt and pass it through the LLM while holding the instructions the same. Next, we aggregate the resulting sample of rankings by computing the central ranking closest in distance to all of them, marginalizing out prompt order biases in the process. Theoretically, we prove the robustness of our method, showing convergence to the true ranking under random perturbations.Empirically, on five datasets in sorting and passage reranking, our approach improves scores from conventional inference by up to 34-52% for Mistral, 7-18% for GPT-3.5, 8-16% for LLaMA v2 (70B). Our code is at https://github.com/castorini/perm-sc.
pdf
bib
abs
CELI: Simple yet Effective Approach to Enhance Out-of-Domain Generalization of Cross-Encoders.
Crystina Zhang
|
Minghan Li
|
Jimmy Lin
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
In text ranking, it is generally believed that the cross-encoders already gather sufficient token interaction information via the attention mechanism in the hidden layers. However, our results show that the cross-encoders can consistently benefit from additional token interaction in the similarity computation at the last layer. We introduce CELI (Cross-Encoder with Late Interaction), which incorporates a late interaction layer into the current cross-encoder models. This simple method brings 5% improvement on BEIR without compromising in-domain effectiveness or search latency. Extensive experiments show that this finding is consistent across different sizes of the cross-encoder models and the first-stage retrievers. Our findings suggest that boiling all information into the [CLS] token is a suboptimal use for cross-encoders, and advocate further studies to investigate its relevance score mechanism.