Cynthia Matuszek


2025

pdf bib
HEAL: Hierarchical Embedding Alignment Loss for Improved Retrieval and Representation Learning
Manish Bhattarai | Ryan Barron | Maksim E. Eren | Minh N. Vu | Vesselin Grantcharov | Ismael Ismael | Valentin Stanev | Cynthia Matuszek | Vladimir I Valtchinov | Kim Rasmussen | Boian S. Alexandrov
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing

Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external document retrieval to provide domain-specific or up-to-date knowledge. The effectiveness of RAG depends on the relevance of retrieved documents, which is influenced by the semantic alignment of embeddings with the domain’s specialized content. Although full fine-tuning can align language models to specific domains, it is computationally intensive and demands substantial data. This paper introduces Hierarchical Embedding Alignment Loss (HEAL), a novel method that leverages hierarchical fuzzy clustering with matrix factorization within contrastive learning to efficiently align LLM embeddings with domain-specific content. HEAL computes level/depth-wise contrastive losses and incorporates hierarchical penalties to align embeddings with the underlying relationships in label hierarchies. This approach enhances retrieval relevance and document classification, effectively reducing hallucinations in LLM outputs. In our experiments, we benchmark and evaluate HEAL across diverse domains, including Healthcare, Material Science, Cyber-security, and Applied Maths.

2024

pdf bib
MUMOSA, Interactive Dashboard for MUlti-MOdal Situation Awareness
Stephanie M. Lukin | Shawn Bowser | Reece Suchocki | Douglas Summers-Stay | Francis Ferraro | Cynthia Matuszek | Clare Voss
Proceedings of the Workshop on the Future of Event Detection (FuturED)

enter abstract here

2019

pdf bib
¿Es un plátano? Exploring the Application of a Physically Grounded Language Acquisition System to Spanish
Caroline Kery | Francis Ferraro | Cynthia Matuszek
Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP)

In this paper we describe a multilingual grounded language learning system adapted from an English-only system. This system learns the meaning of words used in crowd-sourced descriptions by grounding them in the physical representations of the objects they are describing. Our work presents a framework to compare the performance of the system when applied to a new language and to identify modifications necessary to attain equal performance, with the goal of enhancing the ability of robots to learn language from a more diverse range of people. We then demonstrate this system with Spanish, through first analyzing the performance of translated Spanish, and then extending this analysis to a new corpus of crowd-sourced Spanish language data. We find that with small modifications, the system is able to learn color, object, and shape words with comparable performance between languages.

2017

pdf bib
Proceedings of the First Workshop on Language Grounding for Robotics
Mohit Bansal | Cynthia Matuszek | Jacob Andreas | Yoav Artzi | Yonatan Bisk
Proceedings of the First Workshop on Language Grounding for Robotics

2016

pdf bib
Using Language Groundings for Context-Sensitive Text Prediction
Timothy Lewis | Cynthia Matuszek | Amy Hurst | Matthew Taylor
Proceedings of the Workshop on Uphill Battles in Language Processing: Scaling Early Achievements to Robust Methods