Dave Van Veen


2024

pdf bib
RadGraph-XL: A Large-Scale Expert-Annotated Dataset for Entity and Relation Extraction from Radiology Reports
Jean-Benoit Delbrouck | Pierre Chambon | Zhihong Chen | Maya Varma | Andrew Johnston | Louis Blankemeier | Dave Van Veen | Tan Bui | Steven Truong | Curtis Langlotz
Findings of the Association for Computational Linguistics: ACL 2024

In order to enable extraction of structured clinical data from unstructured radiology reports, we introduce RadGraph-XL, a large-scale, expert-annotated dataset for clinical entity and relation extraction. RadGraph-XL consists of 2,300 radiology reports, which are annotated with over 410,000 entities and relations by board-certified radiologists. Whereas previous approaches focus solely on chest X-rays, RadGraph-XL includes data from four anatomy-modality pairs - chest CT, abdomen/pelvis CT, brain MR, and chest X-rays. Then, in order to automate structured information extraction, we use RadGraph-XL to train transformer-based models for clinical entity and relation extraction. Our evaluations include comprehensive ablation studies as well as an expert reader study that evaluates trained models on out-of-domain data. Results demonstrate that our model surpasses the performance of previous methods by up to 52% and notably outperforms GPT-4 in this domain. We release RadGraph-XL as well as our trained model to foster further innovation and research in structured clinical information extraction.

2023

pdf bib
RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models
Dave Van Veen | Cara Van Uden | Maayane Attias | Anuj Pareek | Christian Bluethgen | Malgorzata Polacin | Wah Chiu | Jean-Benoit Delbrouck | Juan Zambrano Chaves | Curtis Langlotz | Akshay Chaudhari | John Pauly
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

We systematically investigate lightweight strategies to adapt large language models (LLMs) for the task of radiology report summarization (RRS). Specifically, we focus on domain adaptation via pretraining (on natural language, biomedical text, or clinical text) and via discrete prompting or parameter-efficient fine-tuning. Our results consistently achieve best performance by maximally adapting to the task via pretraining on clinical text and fine-tuning on RRS examples. Importantly, this method fine-tunes a mere 0.32% of parameters throughout the model, in contrast to end-to-end fine-tuning (100% of parameters). Additionally, we study the effect of in-context examples and out-of-distribution (OOD) training before concluding with a radiologist reader study and qualitative analysis. Our findings highlight the importance of domain adaptation in RRS and provide valuable insights toward developing effective natural language processing solutions for clinical tasks.