2024
pdf
bib
abs
M2PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning
Taowen Wang
|
Yiyang Liu
|
James Chenhao Liang
|
Junhan Zhao
|
Yiming Cui
|
Yuning Mao
|
Shaoliang Nie
|
Jiahao Liu
|
Fuli Feng
|
Zenglin Xu
|
Cheng Han
|
Lifu Huang
|
Qifan Wang
|
Dongfang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains, with increasing emphasis on enhancing their zero-shot generalization capabilities for unseen tasks across various modalities. Instruction tuning has emerged as an effective strategy for achieving zero-shot generalization by finetuning pretrained models on diverse multimodal tasks. As the scale of MLLMs continues to grow, parameter-efficient finetuning becomes increasingly critical. However, most existing parameter-efficient approaches focus only on single modalities and often overlook the multimodal characteristics during finetuning. In this work, we introduce a novel Multimodal Prompt Tuning (M2PT) approach for efficient instruction tuning of MLLMs. M2PT effectively integrates visual and textual prompts into the vision encoder and language processor respectively during finetuning, facilitating the extraction and alignment of features across modalities. Empirical results on various multimodal evaluation datasets demonstrate the superior performance of our approach compared to several state-of-the-art baselines. A comprehensive set of ablation studies validates the effectiveness of our prompt design and the efficiency of our approach.
pdf
bib
abs
EAVE: Efficient Product Attribute Value Extraction via Lightweight Sparse-layer Interaction
Li Yang
|
Qifan Wang
|
Jianfeng Chi
|
Jiahao Liu
|
Jingang Wang
|
Fuli Feng
|
Zenglin Xu
|
Yi Fang
|
Lifu Huang
|
Dongfang Liu
Findings of the Association for Computational Linguistics: EMNLP 2024
Product attribute value extraction involves identifying the specific values associated with various attributes from a product profile. While existing methods often prioritize the development of effective models to improve extraction performance, there has been limited emphasis on extraction efficiency. However, in real-world scenarios, products are typically associated with multiple attributes, necessitating multiple extractions to obtain all corresponding values. In this work, we propose an Efficient product Attribute Value Extraction (EAVE) approach via lightweight sparse-layer interaction. Specifically, we employ a heavy encoder to separately encode the product context and attribute. The resulting non-interacting heavy representations of the context can be cached and reused for all attributes. Additionally, we introduce a light encoder to jointly encode the context and the attribute, facilitating lightweight interactions between them. To enrich the interaction within the lightweight encoder, we design a sparse-layer interaction module to fuse the non-interacting heavy representation into the lightweight encoder. Comprehensive evaluation on two benchmarks demonstrate that our method achieves significant efficiency gains with neutral or marginal loss in performance when the context is long and number of attributes is large. Our code is available at: https://anonymous.4open.science/r/EAVE-EA18.
2023
pdf
bib
abs
MUSTIE: Multimodal Structural Transformer for Web Information Extraction
Qifan Wang
|
Jingang Wang
|
Xiaojun Quan
|
Fuli Feng
|
Zenglin Xu
|
Shaoliang Nie
|
Sinong Wang
|
Madian Khabsa
|
Hamed Firooz
|
Dongfang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The task of web information extraction is to extract target fields of an object from web pages, such as extracting the name, genre and actor from a movie page. Recent sequential modeling approaches have achieved state-of-the-art results on web information extraction. However, most of these methods only focus on extracting information from textual sources while ignoring the rich information from other modalities such as image and web layout. In this work, we propose a novel MUltimodal Structural Transformer (MUST) that incorporates multiple modalities for web information extraction. Concretely, we develop a structural encoder that jointly encodes the multimodal information based on the HTML structure of the web layout, where high-level DOM nodes, and low-level text and image tokens are introduced to represent the entire page. Structural attention patterns are designed to learn effective cross-modal embeddings for all DOM nodes and low-level tokens. An extensive set of experiments are conducted on WebSRC and Common Crawl benchmarks. Experimental results demonstrate the superior performance of MUST over several state-of-the-art baselines.
pdf
bib
abs
APrompt: Attention Prompt Tuning for Efficient Adaptation of Pre-trained Language Models
Qifan Wang
|
Yuning Mao
|
Jingang Wang
|
Hanchao Yu
|
Shaoliang Nie
|
Sinong Wang
|
Fuli Feng
|
Lifu Huang
|
Xiaojun Quan
|
Zenglin Xu
|
Dongfang Liu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
With the continuous growth of large language models, the process of fine-tuning these models for new tasks has become increasingly parameter-intensive. Prompt tuning, a method that involves tuning a small set of soft prompts, has emerged as an effective and efficient approach for adapting large pre-trained language models. However, most existing prompt tuning approaches only introduce prompts at the input layer, limiting their performance and leaving large rooms for improvement. In this work, we propose a novel Attention Prompt tuning method, namely APrompt, for efficient adaptation of pre-trained language models. We first demonstrate that existing prompt tuning can be considered as a special case of attention prompt tuning. We then formally introduce APrompt, which incorporates query, key, and value prompts into the attention layer to guide the attention computation during fine-tuning. Experimental results on the SuperGLUE benchmark consistently demonstrate that our proposed approach outperforms state-of-the-art baselines and full fine-tuning method with pre-trained models at different scales. In addition, a comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.
pdf
bib
abs
MixPAVE: Mix-Prompt Tuning for Few-shot Product Attribute Value Extraction
Li Yang
|
Qifan Wang
|
Jingang Wang
|
Xiaojun Quan
|
Fuli Feng
|
Yu Chen
|
Madian Khabsa
|
Sinong Wang
|
Zenglin Xu
|
Dongfang Liu
Findings of the Association for Computational Linguistics: ACL 2023
The task of product attribute value extraction is to identify values of an attribute from product information. Product attributes are important features, which help improve online shopping experience of customers, such as product search, recommendation and comparison. Most existing works only focus on extracting values for a set of known attributes with sufficient training data. However, with the emerging nature of e-commerce, new products with their unique set of new attributes are constantly generated from different retailers and merchants. Collecting a large number of annotations for every new attribute is costly and time consuming. Therefore, it is an important research problem for product attribute value extraction with limited data. In this work, we propose a novel prompt tuning approach with Mixed Prompts for few-shot Attribute Value Extraction, namely MixPAVE. Specifically, MixPAVE introduces only a small amount (< 1%) of trainable parameters, i.e., a mixture of two learnable prompts, while keeping the existing extraction model frozen. In this way, MixPAVE not only benefits from parameter-efficient training, but also avoids model overfitting on limited training examples. Experimental results on two product benchmarks demonstrate the superior performance of the proposed approach over several state-of-the-art baselines. A comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.
2022
pdf
bib
abs
Learning to Generate Question by Asking Question: A Primal-Dual Approach with Uncommon Word Generation
Qifan Wang
|
Li Yang
|
Xiaojun Quan
|
Fuli Feng
|
Dongfang Liu
|
Zenglin Xu
|
Sinong Wang
|
Hao Ma
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Automatic question generation (AQG) is the task of generating a question from a given passage and an answer. Most existing AQG methods aim at encoding the passage and the answer to generate the question. However, limited work has focused on modeling the correlation between the target answer and the generated question. Moreover, unseen or rare word generation has not been studied in previous works. In this paper, we propose a novel approach which incorporates question generation with its dual problem, question answering, into a unified primal-dual framework. Specifically, the question generation component consists of an encoder that jointly encodes the answer with the passage, and a decoder that produces the question. The question answering component then re-asks the generated question on the passage to ensure that the target answer is obtained. We further introduce a knowledge distillation module to improve the model generalization ability. We conduct an extensive set of experiments on SQuAD and HotpotQA benchmarks. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods.