Dongfu Jiang


2024

pdf bib
VIEScore: Towards Explainable Metrics for Conditional Image Synthesis Evaluation
Max Ku | Dongfu Jiang | Cong Wei | Xiang Yue | Wenhu Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In the rapidly advancing field of conditional image generation research, challenges such as limited explainability lie in effectively evaluating the performance and capabilities of various models. This paper introduces VIEScore, a Visual Instruction-guided Explainable metric for evaluating any conditional image generation tasks. VIEScore leverages general knowledge from Multimodal Large Language Models (MLLMs) as the backbone and does not require training or fine-tuning. We evaluate VIEScore on seven prominent tasks in conditional image tasks and found: (1) VIEScore (GPT4-o) achieves a high Spearman correlation of 0.4 with human evaluations, while the human-to-human correlation is 0.45. (2) VIEScore (with open-source MLLM) is significantly weaker than GPT-4o and GPT-4v in evaluating synthetic images. (3) VIEScore achieves a correlation on par with human ratings in the generation tasks but struggles in editing tasks. With these results, we believe VIEScore shows its great potential to replace human judges in evaluating image synthesis tasks.

pdf bib
VideoScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
Xuan He | Dongfu Jiang | Ge Zhang | Max Ku | Achint Soni | Sherman Siu | Haonan Chen | Abhranil Chandra | Ziyan Jiang | Aaran Arulraj | Kai Wang | Quy Duc Do | Yuansheng Ni | Bohan Lyu | Yaswanth Narsupalli | Rongqi Fan | Zhiheng Lyu | Bill Yuchen Lin | Wenhu Chen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train VideoScore (initialized from Mantis)based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman’s correlation betweenVideoScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result onother held-out EvalCrafter, GenAI-Bench, and VBench show that VideoScore has consistently much higher correlation with humanjudges than other metrics. Due to these results, we believe VideoScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.

2023

pdf bib
LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion
Dongfu Jiang | Xiang Ren | Bill Yuchen Lin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present LLM-Blender, an ensembling framework designed to attain consistently superior performance by leveraging the diverse strengths of multiple open-source large language models (LLMs). Our framework consists of two modules: PairRanker and GenFuser, addressing the observation that optimal LLMs for different examples can significantly vary. PairRanker employs a specialized pairwise comparison method to distinguish subtle differences between candidate outputs. It jointly encodes the input text and a pair of candidates, using cross-attention encoders to determine the superior one. Our results demonstrate that PairRanker exhibits the highest correlation with ChatGPT-based ranking. Then, GenFuser aims to merge the top-ranked candidates, generating an improved output by capitalizing on their strengths and mitigating their weaknesses. To facilitate large-scale evaluation, we introduce a benchmark dataset, MixInstruct, which is a mixture of multiple instruction datasets featuring oracle pairwise comparisons. Our LLM-Blender significantly outperform individual LLMs and baseline methods across various metrics, establishing a substantial performance gap.