While human values play a crucial role in making arguments persuasive, we currently lack the necessary extensive datasets to develop methods for analyzing the values underlying these arguments on a large scale. To address this gap, we present the Touché23-ValueEval dataset, an expansion of the Webis-ArgValues-22 dataset. We collected and annotated an additional 4780 new arguments, doubling the dataset’s size to 9324 arguments. These arguments were sourced from six diverse sources, covering religious texts, community discussions, free-text arguments, newspaper editorials, and political debates. Each argument is annotated by three crowdworkers for 54 human values, following the methodology established in the original dataset. The Touché23-ValueEval dataset was utilized in the SemEval 2023 Task 4. ValueEval: Identification of Human Values behind Arguments, where an ensemble of transformer models demonstrated state-of-the-art performance. Furthermore, our experiments show that a fine-tuned large language model, Llama-2-7B, achieves comparable results.
The human values expressed in argumentative texts can provide valuable insights into the culture of a society. They can be helpful in various applications such as value-based profiling and ethical analysis. However, one of the first steps in achieving this goal is to detect the category of human value from an argument accurately. This task is challenging due to the lack of data and the need for philosophical inference. It also can be challenging for humans to classify arguments according to their underlying human values. This paper elaborates on our model for the SemEval 2023 Task 4 on human value detection. We propose a class-token attention-based model and evaluate it against baseline models, including finetuned BERT language model and a keyword-based approach.
Extraction of supportive premises for a mathematical problem can contribute to profound success in improving automatic reasoning systems. One bottleneck in automated theorem proving is the lack of a proper semantic information retrieval system for mathematical texts. In this paper, we show the effect of keyword extraction in the natural language premise selection (NLPS) shared task proposed in TextGraph-16 that seeks to select the most relevant sentences supporting a given mathematical statement.