Many online content portals allow users to ask questions to supplement their understanding (e.g., of lectures). While information retrieval (IR) systems may provide answers for such user queries, they do not directly assist content creators—such as lecturers who want to improve their content—identify segments that caused a user to ask those questions.We introduce the task of backtracing, in which systems retrieve the text segment that most likely caused a user query.We formalize three real-world domains for which backtracing is important in improving content delivery and communication: understanding the cause of (a) student confusion in the Lecture domain, (b) reader curiosity in the News Article domain, and (c) user emotion in the Conversation domain.We evaluate the zero-shot performance of popular information retrieval methods and language modeling methods, including bi-encoder, re-ranking and likelihood-based methods and ChatGPT.While traditional IR systems retrieve semantically relevant information (e.g., details on “projection matrices” for a query “does projecting multiple times still lead to the same point?”), they often miss the causally relevant context (e.g., the lecturer states “projecting twice gets me the same answer as one projection”). Our results show that there is room for improvement on backtracing and it requires new retrieval approaches.We hope our benchmark serves to improve future retrieval systems for backtracing, spawning systems that refine content generation and identify linguistic triggers influencing user queries.
Many open-ended conversations (e.g., tutoring lessons or business meetings) revolve around pre-defined reference materials, like worksheets or meeting bullets. To provide a framework for studying such conversation structure, we introduce *Problem-Oriented Segmentation & Retrieval (POSR), the task of jointly breaking down conversations into segments and linking each segment to the relevant reference item. As a case study, we apply POSR to education where effectively structuring lessons around problems is critical yet difficult. We present *LessonLink*, the first dataset of real-world tutoring lessons, featuring 3,500 segments, spanning 24,300 minutes of instruction and linked to 116 SAT Math problems. We define and evaluate several joint and independent approaches for POSR, including segmentation (e.g., TextTiling), retrieval (e.g., ColBERT), and large language models (LLMs) methods. Our results highlight that modeling POSR as one joint task is essential: POSR methods outperform independent segmentation and retrieval pipelines by up to +76% on joint metrics and surpass traditional segmentation methods by up to +78% on segmentation metrics. We demonstrate POSR’s practical impact on downstream education applications, deriving new insights on the language and time use in real-world lesson structures.
Scaling high-quality tutoring remains a major challenge in education. Due to growing demand, many platforms employ novice tutors who, unlike experienced educators, struggle to address student mistakes and thus fail to seize prime learning opportunities. Our work explores the potential of large language models (LLMs) to close the novice-expert knowledge gap in remediating math mistakes. We contribute Bridge, a method that uses cognitive task analysis to translate an expert’s latent thought process into a decision-making model for remediation. This involves an expert identifying (A) the student’s error, (B) a remediation strategy, and (C) their intention before generating a response. We construct a dataset of 700 real tutoring conversations, annotated by experts with their decisions. We evaluate state-of-the-art LLMs on our dataset and find that the expert’s decision-making model is critical for LLMs to close the gap: responses from GPT4 with expert decisions (e.g., “simplify the problem”) are +76% more preferred than without. Additionally, context-sensitive decisions are critical to closing pedagogical gaps: random decisions decrease GPT4’s response quality by -97% than expert decisions. Our work shows the potential of embedding expert thought processes in LLM generations to enhance their capability to bridge novice-expert knowledge gaps. Our dataset and code can be found at: https://github.com/rosewang2008/bridge.
We introduce Edu-ConvoKit, an open-source library designed to handle pre-processing, annotation and analysis of conversation data in education. Resources for analyzing education conversation data are scarce, making the research challenging to perform and therefore hard to access. We address these challenges with Edu-ConvoKit. Edu-ConvoKit is open-source [1], pip-installable [2], with comprehensive documentation [3]. Our demo video is available at: https://youtu.be/zdcI839vAko?si=h9qlnl76ucSuXb8-. We include additional resources, such as Colab applications of Edu-ConvoKit to three diverse education datasets [4] and a repository of Edu-ConvoKit-related papers [5].[1] https://github.com/stanfordnlp/edu-convokit[2] https://pypi.org/project/edu-convokit/[3] https://edu-convokit.readthedocs.io/en/latest/[4] https://github.com/stanfordnlp/edu-convokit?tab=readme-ov-file#datasets-with-edu-convokit[5] https://github.com/stanfordnlp/edu-convokit/blob/main/papers.md
Teachers’ growth mindset supportive language (GMSL)—rhetoric emphasizing that one’s skills can be improved over time—has been shown to significantly reduce disparities in academic achievement and enhance students’ learning outcomes. Although teachers espouse growth mindset principles, most find it difficult to adopt GMSL in their practice due the lack of effective coaching in this area. We explore whether large language models (LLMs) can provide automated, personalized coaching to support teachers’ use of GMSL. We establish an effective coaching tool to reframe unsupportive utterances to GMSL by developing (i) a parallel dataset containing GMSL-trained teacher reframings of unsupportive statements with an accompanying annotation guide, (ii) a GMSL prompt framework to revise teachers’ unsupportive language, and (iii) an evaluation framework grounded in psychological theory for evaluating GMSL with the help of students and teachers. We conduct a large-scale evaluation involving 174 teachers and 1,006 students, finding that both teachers and students perceive GMSL-trained teacher and model reframings as more effective in fostering a growth mindset and promoting challenge-seeking behavior, among other benefits. We also find that model-generated reframings outperform those from the GMSL-trained teachers. These results show promise for harnessing LLMs to provide automated GMSL feedback for teachers and, more broadly, LLMs’ potentiality for supporting students’ learning in the classroom. Our findings also demonstrate the benefit of large-scale human evaluations when applying LLMs in educational domains.
Lectures are a learning experience for both students and teachers. Students learn from teachers about the subject material, while teachers learn from students about how to refine their instruction. Unfortunately, online student feedback is unstructured and abundant, making it challenging for teachers to learn and improve. We take a step towards tackling this challenge. First, we contribute a dataset for studying this problem: SIGHT is a large dataset of 288 math lecture transcripts and 15,784 comments collected from the Massachusetts Institute of Technology OpenCourseWare (MIT OCW) YouTube channel. Second, we develop a rubric for categorizing feedback types using qualitative analysis. Qualitative analysis methods are powerful in uncovering domain-specific insights, however they are costly to apply to large data sources. To overcome this challenge, we propose a set of best practices for using large language models (LLMs) to cheaply classify the comments at scale. We observe a striking correlation between the model’s and humans’ annotation: Categories with consistent human annotations (0.9 inter-rater reliability, IRR) also display higher human-model agreement (0.7), while categories with less consistent human annotations (0.7-0.8 IRR) correspondingly demonstrate lower human-model agreement (0.3-0.5). These techniques uncover useful student feedback from thousands of comments, costing around $0.002 per comment. We conclude by discussing exciting future directions on using online student feedback and improving automated annotation techniques for qualitative research.
Classroom discourse is a core medium of instruction analyzing it can provide a window into teaching and learning as well as driving the development of new tools for improving instruction. We introduce the largest dataset of mathematics classroom transcripts available to researchers, and demonstrate how this data can help improve instruction. The dataset consists of 1,660 45-60 minute long 4th and 5th grade elementary mathematics observations collected by the National Center for Teacher Effectiveness (NCTE) between 2010-2013. The anonymized transcripts represent data from 317 teachers across 4 school districts that serve largely historically marginalized students. The transcripts come with rich metadata, including turn-level annotations for dialogic discourse moves, classroom observation scores, demographic information, survey responses and student test scores. We demonstrate that our natural language processing model, trained on our turn-level annotations, can learn to identify dialogic discourse moves and these moves are correlated with better classroom observation scores and learning outcomes. This dataset opens up several possibilities for researchers, educators and policymakers to learn about and improve K-12 instruction. The dataset can be found at https://github.com/ddemszky/classroom-transcript-analysis.
Coaching, which involves classroom observation and expert feedback, is a widespread and fundamental part of teacher training. However, the majority of teachers do not have access to consistent, high quality coaching due to limited resources and access to expertise. We explore whether generative AI could become a cost-effective complement to expert feedback by serving as an automated teacher coach. In doing so, we propose three teacher coaching tasks for generative AI: (A) scoring transcript segments based on classroom observation instruments, (B)identifying highlights and missed opportunities for good instructional strategies, and (C) providing actionable suggestions for eliciting more student reasoning. We recruit expert math teachers to evaluate the zero-shot performance of ChatGPT on each of these tasks for elementary math classroom transcripts. Our results reveal that ChatGPT generates responses that are relevant to improving instruction, but they are often not novel or insightful. For example, 82% of the model’s suggestions point to places in the transcript where the teacher is already implementing that suggestion. Our work highlights the challenges of producing insightful, novel and truthful feedback for teachers while paving the way for future research to address these obstacles and improve the capacity of generative AI to coach teachers.
Responsive teaching is a highly effective strategy that promotes student learning. In math classrooms, teachers might funnel students towards a normative answer or focus students to reflect on their own thinking depending their understanding of math concepts. When teachers focus, they treat students’ contributions as resources for collective sensemaking, and thereby significantly improve students’ achievement and confidence in mathematics. We propose the task of computationally detecting funneling and focusing questions in classroom discourse. We do so by creating and releasing an annotated dataset of 2,348 teacher utterances labeled for funneling and focusing questions, or neither. We introduce supervised and unsupervised approaches to differentiating these questions. Our best model, a supervised RoBERTa model fine-tuned on our dataset, has a strong linear correlation of .76 with human expert labels and with positive educational outcomes, including math instruction quality and student achievement, showing the model’s potential for use in automated teacher feedback tools. Our unsupervised measures show significant but weaker correlations with human labels and outcomes, and they highlight interesting linguistic patterns of funneling and focusing questions. The high performance of the supervised measure indicates its promise for supporting teachers in their instruction.
In conversation, uptake happens when a speaker builds on the contribution of their interlocutor by, for example, acknowledging, repeating or reformulating what they have said. In education, teachers’ uptake of student contributions has been linked to higher student achievement. Yet measuring and improving teachers’ uptake at scale is challenging, as existing methods require expensive annotation by experts. We propose a framework for computationally measuring uptake, by (1) releasing a dataset of student-teacher exchanges extracted from US math classroom transcripts annotated for uptake by experts; (2) formalizing uptake as pointwise Jensen-Shannon Divergence (pJSD), estimated via next utterance classification; (3) conducting a linguistically-motivated comparison of different unsupervised measures and (4) correlating these measures with educational outcomes. We find that although repetition captures a significant part of uptake, pJSD outperforms repetition-based baselines, as it is capable of identifying a wider range of uptake phenomena like question answering and reformulation. We apply our uptake measure to three different educational datasets with outcome indicators. Unlike baseline measures, pJSD correlates significantly with instruction quality in all three, providing evidence for its generalizability and for its potential to serve as an automated professional development tool for teachers.
Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect features in speech and text, such as the deletion of the copula in “He ∅ running”. In this paper, we introduce the task of dialect feature detection, and present two multitask learning approaches, both based on pretrained transformers. For most dialects, large-scale annotated corpora for these features are unavailable, making it difficult to train recognizers. We train our models on a small number of minimal pairs, building on how linguists typically define dialect features. Evaluation on a test set of 22 dialect features of Indian English demonstrates that these models learn to recognize many features with high accuracy, and that a few minimal pairs can be as effective for training as thousands of labeled examples. We also demonstrate the downstream applicability of dialect feature detection both as a measure of dialect density and as a dialect classifier.
In this study, we apply NLP methods to learn about the framing of the 2020 Democratic Presidential candidates in news media. We use both a lexicon-based approach and word embeddings to analyze how candidates are discussed in news sources with different political leanings. Our results show significant differences in the framing of candidates across the news sources along several dimensions, such as sentiment and agency, paving the way for a deeper investigation.
In this paper, we present Pártélet, a digitized Hungarian corpus of Communist propaganda texts. Pártélet was the official journal of the governing party during the Hungarian socialism from 1956 to 1989, hence it represents the direct political agitation and propaganda of the dictatorial system in question. The paper has a dual purpose: first, to present a general review of the corpus compilation process and the basic statistical data of the corpus, and second, to demonstrate through two case studies what the dataset can be used for. We show that our corpus provides a unique opportunity for conducting research on Hungarian propaganda discourse, as well as analyzing changes of this discourse over a 35-year period of time with computer-assisted methods.
Understanding emotion expressed in language has a wide range of applications, from building empathetic chatbots to detecting harmful online behavior. Advancement in this area can be improved using large-scale datasets with a fine-grained typology, adaptable to multiple downstream tasks. We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral. We demonstrate the high quality of the annotations via Principal Preserved Component Analysis. We conduct transfer learning experiments with existing emotion benchmarks to show that our dataset generalizes well to other domains and different emotion taxonomies. Our BERT-based model achieves an average F1-score of .46 across our proposed taxonomy, leaving much room for improvement.
We provide an NLP framework to uncover four linguistic dimensions of political polarization in social media: topic choice, framing, affect and illocutionary force. We quantify these aspects with existing lexical methods, and propose clustering of tweet embeddings as a means to identify salient topics for analysis across events; human evaluations show that our approach generates more cohesive topics than traditional LDA-based models. We apply our methods to study 4.4M tweets on 21 mass shootings. We provide evidence that the discussion of these events is highly polarized politically and that this polarization is primarily driven by partisan differences in framing rather than topic choice. We identify framing devices, such as grounding and the contrasting use of the terms “terrorist” and “crazy”, that contribute to polarization. Results pertaining to topic choice, affect and illocutionary force suggest that Republicans focus more on the shooter and event-specific facts (news) while Democrats focus more on the victims and call for policy changes. Our work contributes to a deeper understanding of the way group divisions manifest in language and to computational methods for studying them.