Human lexicons contain many different words that speakers can use to refer to the same object, e.g., *purple* or *magenta* for the same shade of color. On the one hand, studies on language use have explored how speakers adapt their referring expressions to successfully communicate in context, without focusing on properties of the lexical system. On the other hand, studies in language evolution have discussed how competing pressures for informativeness and simplicity shape lexical systems, without tackling in-context communication. We aim at bridging the gap between these traditions, and explore why a soft mapping between referents and words is a good solution for communication, by taking into account both in-context communication and the structure of the lexicon. We propose a simple measure of informativeness for words and lexical systems, grounded in a visual space, and analyze color naming data for English and Mandarin Chinese. We conclude that optimal lexical systems are those where multiple words can apply to the same referent, conveying different amounts of information. Such systems allow speakers to maximize communication accuracy and minimize the amount of information they convey when communicating about referents in contexts.
Gender bias in Language and Vision datasets and models has the potential to perpetuate harmful stereotypes and discrimination. We analyze gender bias in two Language and Vision datasets. Consistent with prior work, we find that both datasets underrepresent women, which promotes their invisibilization. Moreover, we hypothesize and find that a bias affects human naming choices for people playing sports: speakers produce names indicating the sport (e.g. “tennis player” or “surfer”) more often when it is a man or a boy participating in the sport than when it is a woman or a girl, with an average of 46% vs. 35% of sports-related names for each gender. A computational model trained on these naming data reproduces thebias. We argue that both the data and the model result in representational harm against women.
We compare the 0-shot performance of a neural caption-based image retriever when given as input either human-produced captions or captions generated by a neural captioner. We conduct this comparison on the recently introduced ImageCoDe data-set (Krojer et al. 2022), which contains hard distractors nearly identical to the images to be retrieved. We find that the neural retriever has much higher performance when fed neural rather than human captions, despite the fact that the former, unlike the latter, were generated without awareness of the distractors that make the task hard. Even more remarkably, when the same neural captions are given to human subjects, their retrieval performance is almost at chance level. Our results thus add to the growing body of evidence that, even when the “language” of neural models resembles English, this superficial resemblance might be deeply misleading.
This paper introduces BD2BB, a novel language and vision benchmark that requires multimodal models combine complementary information from the two modalities. Recently, impressive progress has been made to develop universal multimodal encoders suitable for virtually any language and vision tasks. However, current approaches often require them to combine redundant information provided by language and vision. Inspired by real-life communicative contexts, we propose a novel task where either modality is necessary but not sufficient to make a correct prediction. To do so, we first build a dataset of images and corresponding sentences provided by human participants. Second, we evaluate state-of-the-art models and compare their performance against human speakers. We show that, while the task is relatively easy for humans, best-performing models struggle to achieve similar results.